MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim2 Structured version   Visualization version   GIF version

Theorem fbflim2 21781
Description: A condition for a filter base 𝐵 to converge to a point 𝐴. Use neighborhoods instead of open neighborhoods. Compare fbflim 21780. (Contributed by FL, 4-Jul-2011.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fbflim2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑛,𝑥   𝑛,𝐽,𝑥   𝑛,𝑋,𝑥   𝑥,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem fbflim2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fbflim.3 . . 3 𝐹 = (𝑋filGen𝐵)
21fbflim 21780 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦))))
3 topontop 20718 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43ad2antrr 762 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
5 simpr 477 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐴𝑋)
6 toponuni 20719 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76ad2antrr 762 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
85, 7eleqtrd 2703 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐴 𝐽)
9 eqid 2622 . . . . . . . . 9 𝐽 = 𝐽
109isneip 20909 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))))
114, 8, 10syl2anc 693 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))))
12 simpr 477 . . . . . . 7 ((𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))
1311, 12syl6bi 243 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)))
14 r19.29 3072 . . . . . . . 8 ((∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑦𝐽 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)))
15 pm3.45 879 . . . . . . . . . . 11 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → ((𝐴𝑦𝑦𝑛) → (∃𝑥𝐵 𝑥𝑦𝑦𝑛)))
1615imp 445 . . . . . . . . . 10 (((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → (∃𝑥𝐵 𝑥𝑦𝑦𝑛))
17 sstr2 3610 . . . . . . . . . . . . 13 (𝑥𝑦 → (𝑦𝑛𝑥𝑛))
1817com12 32 . . . . . . . . . . . 12 (𝑦𝑛 → (𝑥𝑦𝑥𝑛))
1918reximdv 3016 . . . . . . . . . . 11 (𝑦𝑛 → (∃𝑥𝐵 𝑥𝑦 → ∃𝑥𝐵 𝑥𝑛))
2019impcom 446 . . . . . . . . . 10 ((∃𝑥𝐵 𝑥𝑦𝑦𝑛) → ∃𝑥𝐵 𝑥𝑛)
2116, 20syl 17 . . . . . . . . 9 (((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2221rexlimivw 3029 . . . . . . . 8 (∃𝑦𝐽 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2314, 22syl 17 . . . . . . 7 ((∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2423ex 450 . . . . . 6 (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → (∃𝑦𝐽 (𝐴𝑦𝑦𝑛) → ∃𝑥𝐵 𝑥𝑛))
2513, 24syl9 77 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑥𝐵 𝑥𝑛)))
2625ralrimdv 2968 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛))
274adantr 481 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝐽 ∈ Top)
28 simprl 794 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝑦𝐽)
29 simprr 796 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝐴𝑦)
30 opnneip 20923 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦𝐽𝐴𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
3127, 28, 29, 30syl3anc 1326 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
32 sseq2 3627 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝑥𝑛𝑥𝑦))
3332rexbidv 3052 . . . . . . . . 9 (𝑛 = 𝑦 → (∃𝑥𝐵 𝑥𝑛 ↔ ∃𝑥𝐵 𝑥𝑦))
3433rspcv 3305 . . . . . . . 8 (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦))
3531, 34syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦))
3635expr 643 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦𝐽) → (𝐴𝑦 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦)))
3736com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)))
3837ralrimdva 2969 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)))
3926, 38impbid 202 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛))
4039pm5.32da 673 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
412, 40bitrd 268 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  {csn 4177   cuni 4436  cfv 5888  (class class class)co 6650  fBascfbas 19734  filGencfg 19735  Topctop 20698  TopOnctopon 20715  neicnei 20901   fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-ntr 20824  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator