MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofrlem Structured version   Visualization version   Unicode version

Theorem isofrlem 6590
Description: Lemma for isofr 6592. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
isofrlem.1  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
isofrlem.2  |-  ( ph  ->  ( H " x
)  e.  _V )
Assertion
Ref Expression
isofrlem  |-  ( ph  ->  ( S  Fr  B  ->  R  Fr  A ) )
Distinct variable groups:    x, A    x, B    x, H    ph, x    x, R    x, S

Proof of Theorem isofrlem
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isofrlem.1 . . . . . . 7  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
2 isof1o 6573 . . . . . . 7  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
31, 2syl 17 . . . . . 6  |-  ( ph  ->  H : A -1-1-onto-> B )
4 f1ofn 6138 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
5 n0 3931 . . . . . . . . . 10  |-  ( x  =/=  (/)  <->  E. y  y  e.  x )
6 fnfvima 6496 . . . . . . . . . . . . 13  |-  ( ( H  Fn  A  /\  x  C_  A  /\  y  e.  x )  ->  ( H `  y )  e.  ( H " x
) )
7 ne0i 3921 . . . . . . . . . . . . 13  |-  ( ( H `  y )  e.  ( H "
x )  ->  ( H " x )  =/=  (/) )
86, 7syl 17 . . . . . . . . . . . 12  |-  ( ( H  Fn  A  /\  x  C_  A  /\  y  e.  x )  ->  ( H " x )  =/=  (/) )
983expia 1267 . . . . . . . . . . 11  |-  ( ( H  Fn  A  /\  x  C_  A )  -> 
( y  e.  x  ->  ( H " x
)  =/=  (/) ) )
109exlimdv 1861 . . . . . . . . . 10  |-  ( ( H  Fn  A  /\  x  C_  A )  -> 
( E. y  y  e.  x  ->  ( H " x )  =/=  (/) ) )
115, 10syl5bi 232 . . . . . . . . 9  |-  ( ( H  Fn  A  /\  x  C_  A )  -> 
( x  =/=  (/)  ->  ( H " x )  =/=  (/) ) )
1211expimpd 629 . . . . . . . 8  |-  ( H  Fn  A  ->  (
( x  C_  A  /\  x  =/=  (/) )  -> 
( H " x
)  =/=  (/) ) )
134, 12syl 17 . . . . . . 7  |-  ( H : A -1-1-onto-> B  ->  ( (
x  C_  A  /\  x  =/=  (/) )  ->  ( H " x )  =/=  (/) ) )
14 f1ofo 6144 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H : A -onto-> B )
15 imassrn 5477 . . . . . . . . 9  |-  ( H
" x )  C_  ran  H
16 forn 6118 . . . . . . . . 9  |-  ( H : A -onto-> B  ->  ran  H  =  B )
1715, 16syl5sseq 3653 . . . . . . . 8  |-  ( H : A -onto-> B  -> 
( H " x
)  C_  B )
1814, 17syl 17 . . . . . . 7  |-  ( H : A -1-1-onto-> B  ->  ( H " x )  C_  B
)
1913, 18jctild 566 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  ( (
x  C_  A  /\  x  =/=  (/) )  ->  (
( H " x
)  C_  B  /\  ( H " x )  =/=  (/) ) ) )
203, 19syl 17 . . . . 5  |-  ( ph  ->  ( ( x  C_  A  /\  x  =/=  (/) )  -> 
( ( H "
x )  C_  B  /\  ( H " x
)  =/=  (/) ) ) )
21 dffr3 5498 . . . . . 6  |-  ( S  Fr  B  <->  A. z
( ( z  C_  B  /\  z  =/=  (/) )  ->  E. w  e.  z 
( z  i^i  ( `' S " { w } ) )  =  (/) ) )
22 isofrlem.2 . . . . . . 7  |-  ( ph  ->  ( H " x
)  e.  _V )
23 sseq1 3626 . . . . . . . . . 10  |-  ( z  =  ( H "
x )  ->  (
z  C_  B  <->  ( H " x )  C_  B
) )
24 neeq1 2856 . . . . . . . . . 10  |-  ( z  =  ( H "
x )  ->  (
z  =/=  (/)  <->  ( H " x )  =/=  (/) ) )
2523, 24anbi12d 747 . . . . . . . . 9  |-  ( z  =  ( H "
x )  ->  (
( z  C_  B  /\  z  =/=  (/) )  <->  ( ( H " x )  C_  B  /\  ( H "
x )  =/=  (/) ) ) )
26 ineq1 3807 . . . . . . . . . . 11  |-  ( z  =  ( H "
x )  ->  (
z  i^i  ( `' S " { w }
) )  =  ( ( H " x
)  i^i  ( `' S " { w }
) ) )
2726eqeq1d 2624 . . . . . . . . . 10  |-  ( z  =  ( H "
x )  ->  (
( z  i^i  ( `' S " { w } ) )  =  (/) 
<->  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) ) )
2827rexeqbi1dv 3147 . . . . . . . . 9  |-  ( z  =  ( H "
x )  ->  ( E. w  e.  z 
( z  i^i  ( `' S " { w } ) )  =  (/) 
<->  E. w  e.  ( H " x ) ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) ) )
2925, 28imbi12d 334 . . . . . . . 8  |-  ( z  =  ( H "
x )  ->  (
( ( z  C_  B  /\  z  =/=  (/) )  ->  E. w  e.  z 
( z  i^i  ( `' S " { w } ) )  =  (/) )  <->  ( ( ( H " x ) 
C_  B  /\  ( H " x )  =/=  (/) )  ->  E. w  e.  ( H " x
) ( ( H
" x )  i^i  ( `' S " { w } ) )  =  (/) ) ) )
3029spcgv 3293 . . . . . . 7  |-  ( ( H " x )  e.  _V  ->  ( A. z ( ( z 
C_  B  /\  z  =/=  (/) )  ->  E. w  e.  z  ( z  i^i  ( `' S " { w } ) )  =  (/) )  -> 
( ( ( H
" x )  C_  B  /\  ( H "
x )  =/=  (/) )  ->  E. w  e.  ( H " x ) ( ( H " x
)  i^i  ( `' S " { w }
) )  =  (/) ) ) )
3122, 30syl 17 . . . . . 6  |-  ( ph  ->  ( A. z ( ( z  C_  B  /\  z  =/=  (/) )  ->  E. w  e.  z 
( z  i^i  ( `' S " { w } ) )  =  (/) )  ->  ( ( ( H " x
)  C_  B  /\  ( H " x )  =/=  (/) )  ->  E. w  e.  ( H " x
) ( ( H
" x )  i^i  ( `' S " { w } ) )  =  (/) ) ) )
3221, 31syl5bi 232 . . . . 5  |-  ( ph  ->  ( S  Fr  B  ->  ( ( ( H
" x )  C_  B  /\  ( H "
x )  =/=  (/) )  ->  E. w  e.  ( H " x ) ( ( H " x
)  i^i  ( `' S " { w }
) )  =  (/) ) ) )
3320, 32syl5d 73 . . . 4  |-  ( ph  ->  ( S  Fr  B  ->  ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. w  e.  ( H " x ) ( ( H " x
)  i^i  ( `' S " { w }
) )  =  (/) ) ) )
343adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  A
)  ->  H : A
-1-1-onto-> B )
35 f1ofun 6139 . . . . . . . . . . 11  |-  ( H : A -1-1-onto-> B  ->  Fun  H )
3634, 35syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  A
)  ->  Fun  H )
37 simpl 473 . . . . . . . . . 10  |-  ( ( w  e.  ( H
" x )  /\  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) )  ->  w  e.  ( H " x
) )
38 fvelima 6248 . . . . . . . . . 10  |-  ( ( Fun  H  /\  w  e.  ( H " x
) )  ->  E. y  e.  x  ( H `  y )  =  w )
3936, 37, 38syl2an 494 . . . . . . . . 9  |-  ( ( ( ph  /\  x  C_  A )  /\  (
w  e.  ( H
" x )  /\  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) ) )  ->  E. y  e.  x  ( H `  y )  =  w )
40 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( H
" x )  /\  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) )  ->  ( ( H " x )  i^i  ( `' S " { w } ) )  =  (/) )
41 ssel 3597 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
C_  A  ->  (
y  e.  x  -> 
y  e.  A ) )
4241imdistani 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  C_  A  /\  y  e.  x )  ->  ( x  C_  A  /\  y  e.  A
) )
43 isomin 6587 . . . . . . . . . . . . . . . . . 18  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  C_  A  /\  y  e.  A )
)  ->  ( (
x  i^i  ( `' R " { y } ) )  =  (/)  <->  (
( H " x
)  i^i  ( `' S " { ( H `
 y ) } ) )  =  (/) ) )
441, 42, 43syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  C_  A  /\  y  e.  x ) )  -> 
( ( x  i^i  ( `' R " { y } ) )  =  (/)  <->  ( ( H " x )  i^i  ( `' S " { ( H `  y ) } ) )  =  (/) ) )
45 sneq 4187 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( H `  y )  =  w  ->  { ( H `  y ) }  =  { w } )
4645imaeq2d 5466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( H `  y )  =  w  ->  ( `' S " { ( H `  y ) } )  =  ( `' S " { w } ) )
4746ineq2d 3814 . . . . . . . . . . . . . . . . . 18  |-  ( ( H `  y )  =  w  ->  (
( H " x
)  i^i  ( `' S " { ( H `
 y ) } ) )  =  ( ( H " x
)  i^i  ( `' S " { w }
) ) )
4847eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( ( H `  y )  =  w  ->  (
( ( H "
x )  i^i  ( `' S " { ( H `  y ) } ) )  =  (/) 
<->  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) ) )
4944, 48sylan9bb 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  C_  A  /\  y  e.  x )
)  /\  ( H `  y )  =  w )  ->  ( (
x  i^i  ( `' R " { y } ) )  =  (/)  <->  (
( H " x
)  i^i  ( `' S " { w }
) )  =  (/) ) )
5040, 49syl5ibr 236 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  C_  A  /\  y  e.  x )
)  /\  ( H `  y )  =  w )  ->  ( (
w  e.  ( H
" x )  /\  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) )  ->  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
5150exp42 639 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  C_  A  ->  ( y  e.  x  ->  ( ( H `  y )  =  w  ->  ( ( w  e.  ( H "
x )  /\  (
( H " x
)  i^i  ( `' S " { w }
) )  =  (/) )  ->  ( x  i^i  ( `' R " { y } ) )  =  (/) ) ) ) ) )
5251imp 445 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  C_  A
)  ->  ( y  e.  x  ->  ( ( H `  y )  =  w  ->  (
( w  e.  ( H " x )  /\  ( ( H
" x )  i^i  ( `' S " { w } ) )  =  (/) )  -> 
( x  i^i  ( `' R " { y } ) )  =  (/) ) ) ) )
5352com3l 89 . . . . . . . . . . . 12  |-  ( y  e.  x  ->  (
( H `  y
)  =  w  -> 
( ( ph  /\  x  C_  A )  -> 
( ( w  e.  ( H " x
)  /\  ( ( H " x )  i^i  ( `' S " { w } ) )  =  (/) )  -> 
( x  i^i  ( `' R " { y } ) )  =  (/) ) ) ) )
5453com4t 93 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  A
)  ->  ( (
w  e.  ( H
" x )  /\  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) )  ->  ( y  e.  x  ->  (
( H `  y
)  =  w  -> 
( x  i^i  ( `' R " { y } ) )  =  (/) ) ) ) )
5554imp 445 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  C_  A )  /\  (
w  e.  ( H
" x )  /\  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) ) )  ->  (
y  e.  x  -> 
( ( H `  y )  =  w  ->  ( x  i^i  ( `' R " { y } ) )  =  (/) ) ) )
5655reximdvai 3015 . . . . . . . . 9  |-  ( ( ( ph  /\  x  C_  A )  /\  (
w  e.  ( H
" x )  /\  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) ) )  ->  ( E. y  e.  x  ( H `  y )  =  w  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
5739, 56mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  x  C_  A )  /\  (
w  e.  ( H
" x )  /\  ( ( H "
x )  i^i  ( `' S " { w } ) )  =  (/) ) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) )
5857rexlimdvaa 3032 . . . . . . 7  |-  ( (
ph  /\  x  C_  A
)  ->  ( E. w  e.  ( H " x ) ( ( H " x )  i^i  ( `' S " { w } ) )  =  (/)  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
5958ex 450 . . . . . 6  |-  ( ph  ->  ( x  C_  A  ->  ( E. w  e.  ( H " x
) ( ( H
" x )  i^i  ( `' S " { w } ) )  =  (/)  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) ) )
6059adantrd 484 . . . . 5  |-  ( ph  ->  ( ( x  C_  A  /\  x  =/=  (/) )  -> 
( E. w  e.  ( H " x
) ( ( H
" x )  i^i  ( `' S " { w } ) )  =  (/)  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) ) )
6160a2d 29 . . . 4  |-  ( ph  ->  ( ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. w  e.  ( H " x
) ( ( H
" x )  i^i  ( `' S " { w } ) )  =  (/) )  -> 
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) ) )
6233, 61syld 47 . . 3  |-  ( ph  ->  ( S  Fr  B  ->  ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) ) )
6362alrimdv 1857 . 2  |-  ( ph  ->  ( S  Fr  B  ->  A. x ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) ) )
64 dffr3 5498 . 2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
6563, 64syl6ibr 242 1  |-  ( ph  ->  ( S  Fr  B  ->  R  Fr  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    Fr wfr 5070   `'ccnv 5113   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-fr 5073  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by:  isofr  6592  isofr2  6594  isowe2  6600
  Copyright terms: Public domain W3C validator