MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipopos Structured version   Visualization version   GIF version

Theorem ipopos 17160
Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipopos.i 𝐼 = (toInc‘𝐹)
Assertion
Ref Expression
ipopos 𝐼 ∈ Poset

Proof of Theorem ipopos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipopos.i . . . . 5 𝐼 = (toInc‘𝐹)
2 fvex 6201 . . . . 5 (toInc‘𝐹) ∈ V
31, 2eqeltri 2697 . . . 4 𝐼 ∈ V
43a1i 11 . . 3 (𝐹 ∈ V → 𝐼 ∈ V)
51ipobas 17155 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘𝐼))
6 eqidd 2623 . . 3 (𝐹 ∈ V → (le‘𝐼) = (le‘𝐼))
7 ssid 3624 . . . 4 𝑎𝑎
8 eqid 2622 . . . . . 6 (le‘𝐼) = (le‘𝐼)
91, 8ipole 17158 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
1093anidm23 1385 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
117, 10mpbiri 248 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹) → 𝑎(le‘𝐼)𝑎)
121, 8ipole 17158 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
131, 8ipole 17158 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑎𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
14133com23 1271 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
1512, 14anbi12d 747 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) ↔ (𝑎𝑏𝑏𝑎)))
16 simpl 473 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑎𝑏)
17 simpr 477 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑏𝑎)
1816, 17eqssd 3620 . . . 4 ((𝑎𝑏𝑏𝑎) → 𝑎 = 𝑏)
1915, 18syl6bi 243 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) → 𝑎 = 𝑏))
20 sstr 3611 . . . . 5 ((𝑎𝑏𝑏𝑐) → 𝑎𝑐)
2120a1i 11 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎𝑏𝑏𝑐) → 𝑎𝑐))
22123adant3r3 1276 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
231, 8ipole 17158 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑐𝐹) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
24233adant3r1 1274 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
2522, 24anbi12d 747 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) ↔ (𝑎𝑏𝑏𝑐)))
261, 8ipole 17158 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑐𝐹) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
27263adant3r2 1275 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
2821, 25, 273imtr4d 283 . . 3 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) → 𝑎(le‘𝐼)𝑐))
294, 5, 6, 11, 19, 28isposd 16955 . 2 (𝐹 ∈ V → 𝐼 ∈ Poset)
30 fvprc 6185 . . . 4 𝐹 ∈ V → (toInc‘𝐹) = ∅)
311, 30syl5eq 2668 . . 3 𝐹 ∈ V → 𝐼 = ∅)
32 0pos 16954 . . 3 ∅ ∈ Poset
3331, 32syl6eqel 2709 . 2 𝐹 ∈ V → 𝐼 ∈ Poset)
3429, 33pm2.61i 176 1 𝐼 ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  lecple 15948  Posetcpo 16940  toInccipo 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-tset 15960  df-ple 15961  df-ocomp 15963  df-poset 16946  df-ipo 17152
This theorem is referenced by:  isipodrs  17161  mrelatglb  17184  mrelatglb0  17185  mrelatlub  17186  mreclatBAD  17187
  Copyright terms: Public domain W3C validator