MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinpfin Structured version   Visualization version   GIF version

Theorem lfinpfin 21327
Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
lfinpfin (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)

Proof of Theorem lfinpfin
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . 8 𝐽 = 𝐽
2 eqid 2622 . . . . . . . 8 𝐴 = 𝐴
31, 2locfinbas 21325 . . . . . . 7 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
43eleq2d 2687 . . . . . 6 (𝐴 ∈ (LocFin‘𝐽) → (𝑥 𝐽𝑥 𝐴))
54biimpar 502 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → 𝑥 𝐽)
61locfinnei 21326 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
75, 6syldan 487 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
8 inelcm 4032 . . . . . . . . . 10 ((𝑥𝑠𝑥𝑛) → (𝑠𝑛) ≠ ∅)
98expcom 451 . . . . . . . . 9 (𝑥𝑛 → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
109ad2antlr 763 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) ∧ 𝑠𝐴) → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
1110ss2rabdv 3683 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅})
12 ssfi 8180 . . . . . . . 8 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅}) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1312expcom 451 . . . . . . 7 ({𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1411, 13syl 17 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1514expimpd 629 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
1615rexlimdvw 3034 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
177, 16mpd 15 . . 3 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1817ralrimiva 2966 . 2 (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin)
192isptfin 21319 . 2 (𝐴 ∈ (LocFin‘𝐽) → (𝐴 ∈ PtFin ↔ ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin))
2018, 19mpbird 247 1 (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cin 3573  wss 3574  c0 3915   cuni 4436  cfv 5888  Fincfn 7955  PtFincptfin 21306  LocFinclocfin 21307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-er 7742  df-en 7956  df-fin 7959  df-top 20699  df-ptfin 21309  df-locfin 21310
This theorem is referenced by:  locfindis  21333
  Copyright terms: Public domain W3C validator