MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc2 Structured version   Visualization version   GIF version

Theorem issubc2 16496
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
issubc.h 𝐻 = (Homf𝐶)
issubc.i 1 = (Id‘𝐶)
issubc.o · = (comp‘𝐶)
issubc.c (𝜑𝐶 ∈ Cat)
issubc2.a (𝜑𝐽 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
issubc2 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐶   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑆,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑥,𝑦,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem issubc2
StepHypRef Expression
1 issubc.h . 2 𝐻 = (Homf𝐶)
2 issubc.i . 2 1 = (Id‘𝐶)
3 issubc.o . 2 · = (comp‘𝐶)
4 issubc.c . 2 (𝜑𝐶 ∈ Cat)
5 issubc2.a . . . . 5 (𝜑𝐽 Fn (𝑆 × 𝑆))
6 fndm 5990 . . . . 5 (𝐽 Fn (𝑆 × 𝑆) → dom 𝐽 = (𝑆 × 𝑆))
75, 6syl 17 . . . 4 (𝜑 → dom 𝐽 = (𝑆 × 𝑆))
87dmeqd 5326 . . 3 (𝜑 → dom dom 𝐽 = dom (𝑆 × 𝑆))
9 dmxpid 5345 . . 3 dom (𝑆 × 𝑆) = 𝑆
108, 9syl6req 2673 . 2 (𝜑𝑆 = dom dom 𝐽)
111, 2, 3, 4, 10issubc 16495 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cop 4183   class class class wbr 4653   × cxp 5112  dom cdm 5114   Fn wfn 5883  cfv 5888  (class class class)co 6650  compcco 15953  Catccat 16325  Idccid 16326  Homf chomf 16327  cat cssc 16467  Subcatcsubc 16469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-ixp 7909  df-ssc 16470  df-subc 16472
This theorem is referenced by:  0subcat  16498  catsubcat  16499  subcidcl  16504  subccocl  16505  issubc3  16509  fullsubc  16510  rnghmsubcsetc  41977  rhmsubcsetc  42023  rhmsubcrngc  42029  srhmsubc  42076  rhmsubc  42090  srhmsubcALTV  42094  rhmsubcALTV  42108
  Copyright terms: Public domain W3C validator