![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTV | Structured version Visualization version GIF version |
Description: According to df-subc 16472, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16500 and subcss2 16503). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubcALTV | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhmALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | rngcrescrhmALTV.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
3 | eqidd 2623 | . . . 4 ⊢ (𝜑 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈)) | |
4 | 1, 2, 3 | rhmsscrnghm 42026 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
5 | rngcrescrhmALTV.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
7 | eqid 2622 | . . . 4 ⊢ (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈) | |
8 | eqid 2622 | . . . 4 ⊢ (Rng ∩ 𝑈) = (Rng ∩ 𝑈) | |
9 | eqid 2622 | . . . 4 ⊢ (Homf ‘(RngCatALTV‘𝑈)) = (Homf ‘(RngCatALTV‘𝑈)) | |
10 | 7, 8, 1, 9 | rngchomrnghmresALTV 41996 | . . 3 ⊢ (𝜑 → (Homf ‘(RngCatALTV‘𝑈)) = ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
11 | 4, 6, 10 | 3brtr4d 4685 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘(RngCatALTV‘𝑈))) |
12 | rngcrescrhmALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
13 | 1, 12, 2, 5 | rhmsubcALTVlem3 42106 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
14 | 1, 12, 2, 5 | rhmsubcALTVlem4 42107 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
15 | 14 | ralrimivva 2971 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
16 | 15 | ralrimivva 2971 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
17 | 13, 16 | jca 554 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
18 | 17 | ralrimiva 2966 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
19 | eqid 2622 | . . 3 ⊢ (Id‘(RngCatALTV‘𝑈)) = (Id‘(RngCatALTV‘𝑈)) | |
20 | eqid 2622 | . . 3 ⊢ (comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈)) | |
21 | 7 | rngccatALTV 41990 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (RngCatALTV‘𝑈) ∈ Cat) |
22 | 1, 21 | syl 17 | . . 3 ⊢ (𝜑 → (RngCatALTV‘𝑈) ∈ Cat) |
23 | 1, 12, 2, 5 | rhmsubcALTVlem1 42104 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
24 | 9, 19, 20, 22, 23 | issubc2 16496 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈)) ↔ (𝐻 ⊆cat (Homf ‘(RngCatALTV‘𝑈)) ∧ ∀𝑥 ∈ 𝑅 (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
25 | 11, 18, 24 | mpbir2and 957 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∩ cin 3573 〈cop 4183 class class class wbr 4653 × cxp 5112 ↾ cres 5116 ‘cfv 5888 (class class class)co 6650 compcco 15953 Catccat 16325 Idccid 16326 Homf chomf 16327 ⊆cat cssc 16467 Subcatcsubc 16469 Ringcrg 18547 RingHom crh 18712 Rngcrng 41874 RngHomo crngh 41885 RngCatALTVcrngcALTV 41958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-hom 15966 df-cco 15967 df-0g 16102 df-cat 16329 df-cid 16330 df-homf 16331 df-ssc 16470 df-subc 16472 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-ghm 17658 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-rnghom 18715 df-mgmhm 41779 df-rng0 41875 df-rnghomo 41887 df-rngcALTV 41960 |
This theorem is referenced by: rhmsubcALTVcat 42109 |
Copyright terms: Public domain | W3C validator |