MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgr Structured version   Visualization version   Unicode version

Theorem issubgr 26163
Description: The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v  |-  V  =  (Vtx `  S )
issubgr.a  |-  A  =  (Vtx `  G )
issubgr.i  |-  I  =  (iEdg `  S )
issubgr.b  |-  B  =  (iEdg `  G )
issubgr.e  |-  E  =  (Edg `  S )
Assertion
Ref Expression
issubgr  |-  ( ( G  e.  W  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  =  ( B  |`  dom  I
)  /\  E  C_  ~P V ) ) )

Proof of Theorem issubgr
Dummy variables  s 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( s  =  S  ->  (Vtx `  s )  =  (Vtx
`  S ) )
21adantr 481 . . . . . 6  |-  ( ( s  =  S  /\  g  =  G )  ->  (Vtx `  s )  =  (Vtx `  S )
)
3 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
43adantl 482 . . . . . 6  |-  ( ( s  =  S  /\  g  =  G )  ->  (Vtx `  g )  =  (Vtx `  G )
)
52, 4sseq12d 3634 . . . . 5  |-  ( ( s  =  S  /\  g  =  G )  ->  ( (Vtx `  s
)  C_  (Vtx `  g
)  <->  (Vtx `  S )  C_  (Vtx `  G )
) )
6 fveq2 6191 . . . . . . 7  |-  ( s  =  S  ->  (iEdg `  s )  =  (iEdg `  S ) )
76adantr 481 . . . . . 6  |-  ( ( s  =  S  /\  g  =  G )  ->  (iEdg `  s )  =  (iEdg `  S )
)
8 fveq2 6191 . . . . . . . 8  |-  ( g  =  G  ->  (iEdg `  g )  =  (iEdg `  G ) )
98adantl 482 . . . . . . 7  |-  ( ( s  =  S  /\  g  =  G )  ->  (iEdg `  g )  =  (iEdg `  G )
)
106dmeqd 5326 . . . . . . . 8  |-  ( s  =  S  ->  dom  (iEdg `  s )  =  dom  (iEdg `  S
) )
1110adantr 481 . . . . . . 7  |-  ( ( s  =  S  /\  g  =  G )  ->  dom  (iEdg `  s
)  =  dom  (iEdg `  S ) )
129, 11reseq12d 5397 . . . . . 6  |-  ( ( s  =  S  /\  g  =  G )  ->  ( (iEdg `  g
)  |`  dom  (iEdg `  s ) )  =  ( (iEdg `  G
)  |`  dom  (iEdg `  S ) ) )
137, 12eqeq12d 2637 . . . . 5  |-  ( ( s  =  S  /\  g  =  G )  ->  ( (iEdg `  s
)  =  ( (iEdg `  g )  |`  dom  (iEdg `  s ) )  <->  (iEdg `  S
)  =  ( (iEdg `  G )  |`  dom  (iEdg `  S ) ) ) )
14 fveq2 6191 . . . . . . 7  |-  ( s  =  S  ->  (Edg `  s )  =  (Edg
`  S ) )
151pweqd 4163 . . . . . . 7  |-  ( s  =  S  ->  ~P (Vtx `  s )  =  ~P (Vtx `  S
) )
1614, 15sseq12d 3634 . . . . . 6  |-  ( s  =  S  ->  (
(Edg `  s )  C_ 
~P (Vtx `  s
)  <->  (Edg `  S )  C_ 
~P (Vtx `  S
) ) )
1716adantr 481 . . . . 5  |-  ( ( s  =  S  /\  g  =  G )  ->  ( (Edg `  s
)  C_  ~P (Vtx `  s )  <->  (Edg `  S
)  C_  ~P (Vtx `  S ) ) )
185, 13, 173anbi123d 1399 . . . 4  |-  ( ( s  =  S  /\  g  =  G )  ->  ( ( (Vtx `  s )  C_  (Vtx `  g )  /\  (iEdg `  s )  =  ( (iEdg `  g )  |` 
dom  (iEdg `  s )
)  /\  (Edg `  s
)  C_  ~P (Vtx `  s ) )  <->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  =  ( (iEdg `  G )  |` 
dom  (iEdg `  S )
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) ) ) )
19 df-subgr 26160 . . . 4  |- SubGraph  =  { <. s ,  g >.  |  ( (Vtx `  s )  C_  (Vtx `  g )  /\  (iEdg `  s )  =  ( (iEdg `  g )  |` 
dom  (iEdg `  s )
)  /\  (Edg `  s
)  C_  ~P (Vtx `  s ) ) }
2018, 19brabga 4989 . . 3  |-  ( ( S  e.  U  /\  G  e.  W )  ->  ( S SubGraph  G  <->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  =  ( (iEdg `  G )  |` 
dom  (iEdg `  S )
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) ) ) )
2120ancoms 469 . 2  |-  ( ( G  e.  W  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  =  ( (iEdg `  G )  |` 
dom  (iEdg `  S )
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) ) ) )
22 issubgr.v . . . 4  |-  V  =  (Vtx `  S )
23 issubgr.a . . . 4  |-  A  =  (Vtx `  G )
2422, 23sseq12i 3631 . . 3  |-  ( V 
C_  A  <->  (Vtx `  S
)  C_  (Vtx `  G
) )
25 issubgr.i . . . 4  |-  I  =  (iEdg `  S )
26 issubgr.b . . . . 5  |-  B  =  (iEdg `  G )
2725dmeqi 5325 . . . . 5  |-  dom  I  =  dom  (iEdg `  S
)
2826, 27reseq12i 5394 . . . 4  |-  ( B  |`  dom  I )  =  ( (iEdg `  G
)  |`  dom  (iEdg `  S ) )
2925, 28eqeq12i 2636 . . 3  |-  ( I  =  ( B  |`  dom  I )  <->  (iEdg `  S
)  =  ( (iEdg `  G )  |`  dom  (iEdg `  S ) ) )
30 issubgr.e . . . 4  |-  E  =  (Edg `  S )
3122pweqi 4162 . . . 4  |-  ~P V  =  ~P (Vtx `  S
)
3230, 31sseq12i 3631 . . 3  |-  ( E 
C_  ~P V  <->  (Edg `  S
)  C_  ~P (Vtx `  S ) )
3324, 29, 323anbi123i 1251 . 2  |-  ( ( V  C_  A  /\  I  =  ( B  |` 
dom  I )  /\  E  C_  ~P V )  <-> 
( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  =  ( (iEdg `  G )  |`  dom  (iEdg `  S ) )  /\  (Edg `  S )  C_  ~P (Vtx `  S )
) )
3421, 33syl6bbr 278 1  |-  ( ( G  e.  W  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  =  ( B  |`  dom  I
)  /\  E  C_  ~P V ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114    |` cres 5116   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-res 5126  df-iota 5851  df-fv 5896  df-subgr 26160
This theorem is referenced by:  issubgr2  26164  subgrprop  26165  uhgrissubgr  26167  egrsubgr  26169  0grsubgr  26170  uhgrspan1  26195
  Copyright terms: Public domain W3C validator