MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubm Structured version   Visualization version   GIF version

Theorem issubm 17347
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm.b 𝐵 = (Base‘𝑀)
issubm.z 0 = (0g𝑀)
issubm.p + = (+g𝑀)
Assertion
Ref Expression
issubm (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem issubm
Dummy variables 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
21pweqd 4163 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
3 fveq2 6191 . . . . . . 7 (𝑚 = 𝑀 → (0g𝑚) = (0g𝑀))
43eleq1d 2686 . . . . . 6 (𝑚 = 𝑀 → ((0g𝑚) ∈ 𝑡 ↔ (0g𝑀) ∈ 𝑡))
5 fveq2 6191 . . . . . . . . 9 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
65oveqd 6667 . . . . . . . 8 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥(+g𝑀)𝑦))
76eleq1d 2686 . . . . . . 7 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑡))
872ralbidv 2989 . . . . . 6 (𝑚 = 𝑀 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡))
94, 8anbi12d 747 . . . . 5 (𝑚 = 𝑀 → (((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡) ↔ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)))
102, 9rabeqbidv 3195 . . . 4 (𝑚 = 𝑀 → {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡)} = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)})
11 df-submnd 17336 . . . 4 SubMnd = (𝑚 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡)})
12 fvex 6201 . . . . . 6 (Base‘𝑀) ∈ V
1312pwex 4848 . . . . 5 𝒫 (Base‘𝑀) ∈ V
1413rabex 4813 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ∈ V
1510, 11, 14fvmpt 6282 . . 3 (𝑀 ∈ Mnd → (SubMnd‘𝑀) = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)})
1615eleq2d 2687 . 2 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ 𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)}))
17 eleq2 2690 . . . . 5 (𝑡 = 𝑆 → ((0g𝑀) ∈ 𝑡 ↔ (0g𝑀) ∈ 𝑆))
18 eleq2 2690 . . . . . . 7 (𝑡 = 𝑆 → ((𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1918raleqbi1dv 3146 . . . . . 6 (𝑡 = 𝑆 → (∀𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2019raleqbi1dv 3146 . . . . 5 (𝑡 = 𝑆 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2117, 20anbi12d 747 . . . 4 (𝑡 = 𝑆 → (((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡) ↔ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
2221elrab 3363 . . 3 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
23 issubm.b . . . . . 6 𝐵 = (Base‘𝑀)
2423sseq2i 3630 . . . . 5 (𝑆𝐵𝑆 ⊆ (Base‘𝑀))
25 issubm.z . . . . . . 7 0 = (0g𝑀)
2625eleq1i 2692 . . . . . 6 ( 0𝑆 ↔ (0g𝑀) ∈ 𝑆)
27 issubm.p . . . . . . . . 9 + = (+g𝑀)
2827oveqi 6663 . . . . . . . 8 (𝑥 + 𝑦) = (𝑥(+g𝑀)𝑦)
2928eleq1i 2692 . . . . . . 7 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆)
30292ralbii 2981 . . . . . 6 (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
3126, 30anbi12i 733 . . . . 5 (( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
3224, 31anbi12i 733 . . . 4 ((𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
33 3anass 1042 . . . 4 ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
3412elpw2 4828 . . . . 5 (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))
3534anbi1i 731 . . . 4 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
3632, 33, 353bitr4ri 293 . . 3 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
3722, 36bitri 264 . 2 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
3816, 37syl6bb 276 1 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  wss 3574  𝒫 cpw 4158  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mndcmnd 17294  SubMndcsubmnd 17334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-submnd 17336
This theorem is referenced by:  issubm2  17348  issubmd  17349  submcl  17353  mhmima  17363  mhmeql  17364  submacs  17365  gsumwspan  17383  frmdsssubm  17398  issubg3  17612  cntzsubm  17768  oppgsubm  17792  lsmsubm  18068  issubrg3  18808  xrge0subm  19787  cnsubmlem  19794  nn0srg  19816  rge0srg  19817  efsubm  24297  iistmd  29948  isdomn3  37782  mon1psubm  37784
  Copyright terms: Public domain W3C validator