MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwspan Structured version   Visualization version   GIF version

Theorem gsumwspan 17383
Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
gsumwspan.b 𝐵 = (Base‘𝑀)
gsumwspan.k 𝐾 = (mrCls‘(SubMnd‘𝑀))
Assertion
Ref Expression
gsumwspan ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐵   𝑤,𝑀   𝑤,𝐾

Proof of Theorem gsumwspan
Dummy variables 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwspan.b . . . . . 6 𝐵 = (Base‘𝑀)
21submacs 17365 . . . . 5 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (ACS‘𝐵))
32acsmred 16317 . . . 4 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
43adantr 481 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
5 simpr 477 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐺)
65s1cld 13383 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ⟨“𝑥”⟩ ∈ Word 𝐺)
7 ssel2 3598 . . . . . . . . . 10 ((𝐺𝐵𝑥𝐺) → 𝑥𝐵)
87adantll 750 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐵)
91gsumws1 17376 . . . . . . . . 9 (𝑥𝐵 → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
108, 9syl 17 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
1110eqcomd 2628 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 = (𝑀 Σg ⟨“𝑥”⟩))
12 oveq2 6658 . . . . . . . . 9 (𝑤 = ⟨“𝑥”⟩ → (𝑀 Σg 𝑤) = (𝑀 Σg ⟨“𝑥”⟩))
1312eqeq2d 2632 . . . . . . . 8 (𝑤 = ⟨“𝑥”⟩ → (𝑥 = (𝑀 Σg 𝑤) ↔ 𝑥 = (𝑀 Σg ⟨“𝑥”⟩)))
1413rspcev 3309 . . . . . . 7 ((⟨“𝑥”⟩ ∈ Word 𝐺𝑥 = (𝑀 Σg ⟨“𝑥”⟩)) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
156, 11, 14syl2anc 693 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
16 vex 3203 . . . . . . 7 𝑥 ∈ V
17 eqid 2622 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))
1817elrnmpt 5372 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤)))
1916, 18ax-mp 5 . . . . . 6 (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
2015, 19sylibr 224 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
2120ex 450 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑥𝐺𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
2221ssrdv 3609 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
23 gsumwspan.k . . . . . . . . . . 11 𝐾 = (mrCls‘(SubMnd‘𝑀))
2423mrccl 16271 . . . . . . . . . 10 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
253, 24sylan 488 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
2625adantr 481 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
2723mrcssid 16277 . . . . . . . . . . 11 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
283, 27sylan 488 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
29 sswrd 13313 . . . . . . . . . 10 (𝐺 ⊆ (𝐾𝐺) → Word 𝐺 ⊆ Word (𝐾𝐺))
3028, 29syl 17 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → Word 𝐺 ⊆ Word (𝐾𝐺))
3130sselda 3603 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → 𝑤 ∈ Word (𝐾𝐺))
32 gsumwsubmcl 17375 . . . . . . . 8 (((𝐾𝐺) ∈ (SubMnd‘𝑀) ∧ 𝑤 ∈ Word (𝐾𝐺)) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3326, 31, 32syl2anc 693 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3433, 17fmptd 6385 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)):Word 𝐺⟶(𝐾𝐺))
35 frn 6053 . . . . . 6 ((𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)):Word 𝐺⟶(𝐾𝐺) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ (𝐾𝐺))
3634, 35syl 17 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ (𝐾𝐺))
373, 23mrcssvd 16283 . . . . . 6 (𝑀 ∈ Mnd → (𝐾𝐺) ⊆ 𝐵)
3837adantr 481 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ 𝐵)
3936, 38sstrd 3613 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵)
40 wrd0 13330 . . . . . 6 ∅ ∈ Word 𝐺
41 eqid 2622 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
4241gsum0 17278 . . . . . . . 8 (𝑀 Σg ∅) = (0g𝑀)
4342eqcomi 2631 . . . . . . 7 (0g𝑀) = (𝑀 Σg ∅)
4443a1i 11 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) = (𝑀 Σg ∅))
45 oveq2 6658 . . . . . . . 8 (𝑤 = ∅ → (𝑀 Σg 𝑤) = (𝑀 Σg ∅))
4645eqeq2d 2632 . . . . . . 7 (𝑤 = ∅ → ((0g𝑀) = (𝑀 Σg 𝑤) ↔ (0g𝑀) = (𝑀 Σg ∅)))
4746rspcev 3309 . . . . . 6 ((∅ ∈ Word 𝐺 ∧ (0g𝑀) = (𝑀 Σg ∅)) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
4840, 44, 47sylancr 695 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
49 fvex 6201 . . . . . 6 (0g𝑀) ∈ V
5017elrnmpt 5372 . . . . . 6 ((0g𝑀) ∈ V → ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤)))
5149, 50ax-mp 5 . . . . 5 ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
5248, 51sylibr 224 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
53 ccatcl 13359 . . . . . . . . 9 ((𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺) → (𝑧 ++ 𝑣) ∈ Word 𝐺)
5453adantl 482 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → (𝑧 ++ 𝑣) ∈ Word 𝐺)
55 simpll 790 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑀 ∈ Mnd)
56 sswrd 13313 . . . . . . . . . . . 12 (𝐺𝐵 → Word 𝐺 ⊆ Word 𝐵)
5756ad2antlr 763 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → Word 𝐺 ⊆ Word 𝐵)
58 simprl 794 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐺)
5957, 58sseldd 3604 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐵)
60 simprr 796 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐺)
6157, 60sseldd 3604 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐵)
62 eqid 2622 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
631, 62gsumccat 17378 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑧 ∈ Word 𝐵𝑣 ∈ Word 𝐵) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
6455, 59, 61, 63syl3anc 1326 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
6564eqcomd 2628 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣)))
66 oveq2 6658 . . . . . . . . . 10 (𝑤 = (𝑧 ++ 𝑣) → (𝑀 Σg 𝑤) = (𝑀 Σg (𝑧 ++ 𝑣)))
6766eqeq2d 2632 . . . . . . . . 9 (𝑤 = (𝑧 ++ 𝑣) → (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤) ↔ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣))))
6867rspcev 3309 . . . . . . . 8 (((𝑧 ++ 𝑣) ∈ Word 𝐺 ∧ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣))) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
6954, 65, 68syl2anc 693 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
70 ovex 6678 . . . . . . . 8 ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V
7117elrnmpt 5372 . . . . . . . 8 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V → (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤)))
7270, 71ax-mp 5 . . . . . . 7 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
7369, 72sylibr 224 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
7473ralrimivva 2971 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
75 oveq2 6658 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑧))
7675cbvmptv 4750 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7776rneqi 5352 . . . . . . 7 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7877raleqi 3142 . . . . . 6 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
79 oveq2 6658 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑣))
8079cbvmptv 4750 . . . . . . . . . 10 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
8180rneqi 5352 . . . . . . . . 9 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
8281raleqi 3142 . . . . . . . 8 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
83 eqid 2622 . . . . . . . . . 10 (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
84 oveq2 6658 . . . . . . . . . . 11 (𝑦 = (𝑀 Σg 𝑣) → (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑀)(𝑀 Σg 𝑣)))
8584eleq1d 2686 . . . . . . . . . 10 (𝑦 = (𝑀 Σg 𝑣) → ((𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ (𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
8683, 85ralrnmpt 6368 . . . . . . . . 9 (∀𝑣 ∈ Word 𝐺(𝑀 Σg 𝑣) ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
87 ovexd 6680 . . . . . . . . 9 (𝑣 ∈ Word 𝐺 → (𝑀 Σg 𝑣) ∈ V)
8886, 87mprg 2926 . . . . . . . 8 (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
8982, 88bitri 264 . . . . . . 7 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9089ralbii 2980 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
91 eqid 2622 . . . . . . . 8 (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
92 oveq1 6657 . . . . . . . . . 10 (𝑥 = (𝑀 Σg 𝑧) → (𝑥(+g𝑀)(𝑀 Σg 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
9392eleq1d 2686 . . . . . . . . 9 (𝑥 = (𝑀 Σg 𝑧) → ((𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
9493ralbidv 2986 . . . . . . . 8 (𝑥 = (𝑀 Σg 𝑧) → (∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
9591, 94ralrnmpt 6368 . . . . . . 7 (∀𝑧 ∈ Word 𝐺(𝑀 Σg 𝑧) ∈ V → (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
96 ovexd 6680 . . . . . . 7 (𝑧 ∈ Word 𝐺 → (𝑀 Σg 𝑧) ∈ V)
9795, 96mprg 2926 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9878, 90, 973bitri 286 . . . . 5 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9974, 98sylibr 224 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
1001, 41, 62issubm 17347 . . . . 5 (𝑀 ∈ Mnd → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
101100adantr 481 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
10239, 52, 99, 101mpbir3and 1245 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀))
10323mrcsscl 16280 . . 3 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀)) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
1044, 22, 102, 103syl3anc 1326 . 2 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
105104, 36eqssd 3620 1 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  Word cword 13291   ++ cconcat 13293  ⟨“cs1 13294  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Moorecmre 16242  mrClscmrc 16243  Mndcmnd 17294  SubMndcsubmnd 17334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336
This theorem is referenced by:  psgneldm2  17924  psgnfitr  17937
  Copyright terms: Public domain W3C validator