MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-3 Structured version   Visualization version   GIF version

Theorem ist0-3 21149
Description: The predicate "is a T0 space," expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
ist0-3 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))))
Distinct variable groups:   𝑥,𝑦,𝑜,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist0-3
StepHypRef Expression
1 ist0-2 21148 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
2 con34b 306 . . . 4 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
3 df-ne 2795 . . . . 5 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
4 xor 935 . . . . . . . 8 (¬ (𝑥𝑜𝑦𝑜) ↔ ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (𝑦𝑜 ∧ ¬ 𝑥𝑜)))
5 ancom 466 . . . . . . . . 9 ((𝑦𝑜 ∧ ¬ 𝑥𝑜) ↔ (¬ 𝑥𝑜𝑦𝑜))
65orbi2i 541 . . . . . . . 8 (((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (𝑦𝑜 ∧ ¬ 𝑥𝑜)) ↔ ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))
74, 6bitri 264 . . . . . . 7 (¬ (𝑥𝑜𝑦𝑜) ↔ ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))
87rexbii 3041 . . . . . 6 (∃𝑜𝐽 ¬ (𝑥𝑜𝑦𝑜) ↔ ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))
9 rexnal 2995 . . . . . 6 (∃𝑜𝐽 ¬ (𝑥𝑜𝑦𝑜) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
108, 9bitr3i 266 . . . . 5 (∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
113, 10imbi12i 340 . . . 4 ((𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜))) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
122, 11bitr4i 267 . . 3 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜))))
13122ralbii 2981 . 2 (∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜))))
141, 13syl6bb 276 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wcel 1990  wne 2794  wral 2912  wrex 2913  cfv 5888  TopOnctopon 20715  Kol2ct0 21110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topon 20716  df-t0 21117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator