MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt0 Structured version   Visualization version   GIF version

Theorem cnt0 21150
Description: The preimage of a T0 topology under an injective map is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnt0 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)

Proof of Theorem cnt0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 21044 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1084 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 simpl3 1066 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 21069 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
53, 4sylan 488 . . . . . . . 8 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
6 eleq2 2690 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑥𝑧𝑥 ∈ (𝐹𝑤)))
7 eleq2 2690 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑦𝑧𝑦 ∈ (𝐹𝑤)))
86, 7bibi12d 335 . . . . . . . . 9 (𝑧 = (𝐹𝑤) → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
98rspcv 3305 . . . . . . . 8 ((𝐹𝑤) ∈ 𝐽 → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
105, 9syl 17 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
11 eqid 2622 . . . . . . . . . . . . . 14 𝐽 = 𝐽
12 eqid 2622 . . . . . . . . . . . . . 14 𝐾 = 𝐾
1311, 12cnf 21050 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
143, 13syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹: 𝐽 𝐾)
15 ffn 6045 . . . . . . . . . . . 12 (𝐹: 𝐽 𝐾𝐹 Fn 𝐽)
1614, 15syl 17 . . . . . . . . . . 11 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 Fn 𝐽)
17 elpreima 6337 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
1816, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
19 simprl 794 . . . . . . . . . . 11 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥 𝐽)
2019biantrurd 529 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝐹𝑥) ∈ 𝑤 ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
2118, 20bitr4d 271 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝐹𝑥) ∈ 𝑤))
22 elpreima 6337 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2316, 22syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
24 simprr 796 . . . . . . . . . . 11 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦 𝐽)
2524biantrurd 529 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝐹𝑦) ∈ 𝑤 ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2623, 25bitr4d 271 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝐹𝑦) ∈ 𝑤))
2721, 26bibi12d 335 . . . . . . . 8 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2827adantr 481 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2910, 28sylibd 229 . . . . . 6 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
3029ralrimdva 2969 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
31 simpl1 1064 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐾 ∈ Kol2)
3214, 19ffvelrnd 6360 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑥) ∈ 𝐾)
3314, 24ffvelrnd 6360 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑦) ∈ 𝐾)
3412t0sep 21128 . . . . . 6 ((𝐾 ∈ Kol2 ∧ ((𝐹𝑥) ∈ 𝐾 ∧ (𝐹𝑦) ∈ 𝐾)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3531, 32, 33, 34syl12anc 1324 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3630, 35syld 47 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝐹𝑥) = (𝐹𝑦)))
37 simpl2 1065 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹:𝑋1-1𝑌)
38 fdm 6051 . . . . . . . 8 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
3914, 38syl 17 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝐽)
40 f1dm 6105 . . . . . . . 8 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
4137, 40syl 17 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝑋)
4239, 41eqtr3d 2658 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐽 = 𝑋)
4319, 42eleqtrd 2703 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥𝑋)
4424, 42eleqtrd 2703 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦𝑋)
45 f1fveq 6519 . . . . 5 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4637, 43, 44, 45syl12anc 1324 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4736, 46sylibd 229 . . 3 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4847ralrimivva 2971 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4911ist0 21124 . 2 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
502, 48, 49sylanbrc 698 1 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   cuni 4436  ccnv 5113  dom cdm 5114  cima 5117   Fn wfn 5883  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  Topctop 20698   Cn ccn 21028  Kol2ct0 21110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031  df-t0 21117
This theorem is referenced by:  restt0  21170  sst0  21177  t0hmph  21593
  Copyright terms: Public domain W3C validator