Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendod Structured version   Visualization version   GIF version

Theorem istendod 36050
Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
istendod.1 (𝜑 → (𝐾𝑉𝑊𝐻))
istendod.2 (𝜑𝑆:𝑇𝑇)
istendod.3 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
istendod.4 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
Assertion
Ref Expression
istendod (𝜑𝑆𝐸)
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔   𝑆,𝑓,𝑔   ,𝑓   𝑅,𝑓   𝜑,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑔)   𝐸(𝑓,𝑔)   𝐻(𝑓,𝑔)   (𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem istendod
StepHypRef Expression
1 istendod.2 . 2 (𝜑𝑆:𝑇𝑇)
2 istendod.3 . . . 4 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
323expb 1266 . . 3 ((𝜑 ∧ (𝑓𝑇𝑔𝑇)) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
43ralrimivva 2971 . 2 (𝜑 → ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
5 istendod.4 . . 3 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
65ralrimiva 2966 . 2 (𝜑 → ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))
7 istendod.1 . . 3 (𝜑 → (𝐾𝑉𝑊𝐻))
8 tendoset.l . . . 4 = (le‘𝐾)
9 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
10 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
12 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
138, 9, 10, 11, 12istendo 36048 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
147, 13syl 17 . 2 (𝜑 → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
151, 4, 6, 14mpbir3and 1245 1 (𝜑𝑆𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  ccom 5118  wf 5884  cfv 5888  lecple 15948  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-tendo 36043
This theorem is referenced by:  tendoidcl  36057  tendococl  36060  tendoplcl  36069  tendo0cl  36078  tendoicl  36084  cdlemk56  36259
  Copyright terms: Public domain W3C validator