| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. 2
⊢
(le‘𝐾) =
(le‘𝐾) |
| 2 | | tendoicl.h |
. 2
⊢ 𝐻 = (LHyp‘𝐾) |
| 3 | | tendoicl.t |
. 2
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 4 | | eqid 2622 |
. 2
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
| 5 | | tendoicl.e |
. 2
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 6 | | simpl 473 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 7 | | simpll 790 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 8 | 2, 3, 5 | tendocl 36055 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
| 9 | 8 | 3expa 1265 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
| 10 | 2, 3 | ltrncnv 35432 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → ◡(𝑆‘𝑔) ∈ 𝑇) |
| 11 | 7, 9, 10 | syl2anc 693 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ◡(𝑆‘𝑔) ∈ 𝑇) |
| 12 | | eqid 2622 |
. . . 4
⊢ (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔)) |
| 13 | 11, 12 | fmptd 6385 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔)):𝑇⟶𝑇) |
| 14 | | tendoicl.i |
. . . . . 6
⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
| 15 | 14, 3 | tendoi 36082 |
. . . . 5
⊢ (𝑆 ∈ 𝐸 → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
| 16 | 15 | adantl 482 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
| 17 | 16 | feq1d 6030 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((𝐼‘𝑆):𝑇⟶𝑇 ↔ (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔)):𝑇⟶𝑇)) |
| 18 | 13, 17 | mpbird 247 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐼‘𝑆):𝑇⟶𝑇) |
| 19 | | simp1r 1086 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → 𝑆 ∈ 𝐸) |
| 20 | 2, 3 | ltrnco 36007 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑔 ∘ ℎ) ∈ 𝑇) |
| 21 | 20 | 3adant1r 1319 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑔 ∘ ℎ) ∈ 𝑇) |
| 22 | 14, 3 | tendoi2 36083 |
. . . 4
⊢ ((𝑆 ∈ 𝐸 ∧ (𝑔 ∘ ℎ) ∈ 𝑇) → ((𝐼‘𝑆)‘(𝑔 ∘ ℎ)) = ◡(𝑆‘(𝑔 ∘ ℎ))) |
| 23 | 19, 21, 22 | syl2anc 693 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘(𝑔 ∘ ℎ)) = ◡(𝑆‘(𝑔 ∘ ℎ))) |
| 24 | | cnvco 5308 |
. . . 4
⊢ ◡((𝑆‘ℎ) ∘ (𝑆‘𝑔)) = (◡(𝑆‘𝑔) ∘ ◡(𝑆‘ℎ)) |
| 25 | 2, 3 | ltrncom 36026 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑔 ∘ ℎ) = (ℎ ∘ 𝑔)) |
| 26 | 25 | 3adant1r 1319 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑔 ∘ ℎ) = (ℎ ∘ 𝑔)) |
| 27 | 26 | fveq2d 6195 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑆‘(𝑔 ∘ ℎ)) = (𝑆‘(ℎ ∘ 𝑔))) |
| 28 | | simp1ll 1124 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → 𝐾 ∈ HL) |
| 29 | | simp1lr 1125 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → 𝑊 ∈ 𝐻) |
| 30 | | simp3 1063 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ℎ ∈ 𝑇) |
| 31 | | simp2 1062 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → 𝑔 ∈ 𝑇) |
| 32 | 2, 3, 5 | tendovalco 36053 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑔 ∈ 𝑇)) → (𝑆‘(ℎ ∘ 𝑔)) = ((𝑆‘ℎ) ∘ (𝑆‘𝑔))) |
| 33 | 28, 29, 19, 30, 31, 32 | syl32anc 1334 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑆‘(ℎ ∘ 𝑔)) = ((𝑆‘ℎ) ∘ (𝑆‘𝑔))) |
| 34 | 27, 33 | eqtrd 2656 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑆‘(𝑔 ∘ ℎ)) = ((𝑆‘ℎ) ∘ (𝑆‘𝑔))) |
| 35 | 34 | cnveqd 5298 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ◡(𝑆‘(𝑔 ∘ ℎ)) = ◡((𝑆‘ℎ) ∘ (𝑆‘𝑔))) |
| 36 | 14, 3 | tendoi2 36083 |
. . . . . 6
⊢ ((𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
| 37 | 19, 31, 36 | syl2anc 693 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
| 38 | 14, 3 | tendoi2 36083 |
. . . . . 6
⊢ ((𝑆 ∈ 𝐸 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘ℎ) = ◡(𝑆‘ℎ)) |
| 39 | 19, 30, 38 | syl2anc 693 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘ℎ) = ◡(𝑆‘ℎ)) |
| 40 | 37, 39 | coeq12d 5286 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (((𝐼‘𝑆)‘𝑔) ∘ ((𝐼‘𝑆)‘ℎ)) = (◡(𝑆‘𝑔) ∘ ◡(𝑆‘ℎ))) |
| 41 | 24, 35, 40 | 3eqtr4a 2682 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ◡(𝑆‘(𝑔 ∘ ℎ)) = (((𝐼‘𝑆)‘𝑔) ∘ ((𝐼‘𝑆)‘ℎ))) |
| 42 | 23, 41 | eqtrd 2656 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘(𝑔 ∘ ℎ)) = (((𝐼‘𝑆)‘𝑔) ∘ ((𝐼‘𝑆)‘ℎ))) |
| 43 | 36 | adantll 750 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
| 44 | 43 | fveq2d 6195 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼‘𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘◡(𝑆‘𝑔))) |
| 45 | 2, 3, 4 | trlcnv 35452 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘◡(𝑆‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))) |
| 46 | 7, 9, 45 | syl2anc 693 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘◡(𝑆‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))) |
| 47 | 44, 46 | eqtrd 2656 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼‘𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))) |
| 48 | 1, 2, 3, 4, 5 | tendotp 36049 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔)) |
| 49 | 48 | 3expa 1265 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔)) |
| 50 | 47, 49 | eqbrtrd 4675 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼‘𝑆)‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔)) |
| 51 | 1, 2, 3, 4, 5, 6, 18, 42, 50 | istendod 36050 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐼‘𝑆) ∈ 𝐸) |