Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendod Structured version   Visualization version   Unicode version

Theorem istendod 36050
Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l  |-  .<_  =  ( le `  K )
tendoset.h  |-  H  =  ( LHyp `  K
)
tendoset.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoset.r  |-  R  =  ( ( trL `  K
) `  W )
tendoset.e  |-  E  =  ( ( TEndo `  K
) `  W )
istendod.1  |-  ( ph  ->  ( K  e.  V  /\  W  e.  H
) )
istendod.2  |-  ( ph  ->  S : T --> T )
istendod.3  |-  ( (
ph  /\  f  e.  T  /\  g  e.  T
)  ->  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) ) )
istendod.4  |-  ( (
ph  /\  f  e.  T )  ->  ( R `  ( S `  f ) )  .<_  ( R `  f ) )
Assertion
Ref Expression
istendod  |-  ( ph  ->  S  e.  E )
Distinct variable groups:    f, g, K    T, f, g    f, W, g    S, f, g    .<_ , f    R, f    ph, f,
g
Allowed substitution hints:    R( g)    E( f, g)    H( f, g)    .<_ ( g)    V( f, g)

Proof of Theorem istendod
StepHypRef Expression
1 istendod.2 . 2  |-  ( ph  ->  S : T --> T )
2 istendod.3 . . . 4  |-  ( (
ph  /\  f  e.  T  /\  g  e.  T
)  ->  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) ) )
323expb 1266 . . 3  |-  ( (
ph  /\  ( f  e.  T  /\  g  e.  T ) )  -> 
( S `  (
f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g ) ) )
43ralrimivva 2971 . 2  |-  ( ph  ->  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `
 f )  o.  ( S `  g
) ) )
5 istendod.4 . . 3  |-  ( (
ph  /\  f  e.  T )  ->  ( R `  ( S `  f ) )  .<_  ( R `  f ) )
65ralrimiva 2966 . 2  |-  ( ph  ->  A. f  e.  T  ( R `  ( S `
 f ) ) 
.<_  ( R `  f
) )
7 istendod.1 . . 3  |-  ( ph  ->  ( K  e.  V  /\  W  e.  H
) )
8 tendoset.l . . . 4  |-  .<_  =  ( le `  K )
9 tendoset.h . . . 4  |-  H  =  ( LHyp `  K
)
10 tendoset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
11 tendoset.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
12 tendoset.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
138, 9, 10, 11, 12istendo 36048 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  <->  ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) ) ) )
147, 13syl 17 . 2  |-  ( ph  ->  ( S  e.  E  <->  ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) ) ) )
151, 4, 6, 14mpbir3and 1245 1  |-  ( ph  ->  S  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    o. ccom 5118   -->wf 5884   ` cfv 5888   lecple 15948   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-tendo 36043
This theorem is referenced by:  tendoidcl  36057  tendococl  36060  tendoplcl  36069  tendo0cl  36078  tendoicl  36084  cdlemk56  36259
  Copyright terms: Public domain W3C validator