MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbreu Structured version   Visualization version   GIF version

Theorem lbreu 10973
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
lbreu ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem lbreu
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
21rspcv 3305 . . . . . . . 8 (𝑤𝑆 → (∀𝑦𝑆 𝑥𝑦𝑥𝑤))
3 breq2 4657 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑤𝑦𝑤𝑥))
43rspcv 3305 . . . . . . . 8 (𝑥𝑆 → (∀𝑦𝑆 𝑤𝑦𝑤𝑥))
52, 4im2anan9r 881 . . . . . . 7 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑥𝑤𝑤𝑥)))
6 ssel 3597 . . . . . . . . . . . 12 (𝑆 ⊆ ℝ → (𝑥𝑆𝑥 ∈ ℝ))
7 ssel 3597 . . . . . . . . . . . 12 (𝑆 ⊆ ℝ → (𝑤𝑆𝑤 ∈ ℝ))
86, 7anim12d 586 . . . . . . . . . . 11 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)))
98impcom 446 . . . . . . . . . 10 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))
10 letri3 10123 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
119, 10syl 17 . . . . . . . . 9 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
1211exbiri 652 . . . . . . . 8 ((𝑥𝑆𝑤𝑆) → (𝑆 ⊆ ℝ → ((𝑥𝑤𝑤𝑥) → 𝑥 = 𝑤)))
1312com23 86 . . . . . . 7 ((𝑥𝑆𝑤𝑆) → ((𝑥𝑤𝑤𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
145, 13syld 47 . . . . . 6 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
1514com3r 87 . . . . 5 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
1615ralrimivv 2970 . . . 4 (𝑆 ⊆ ℝ → ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤))
1716anim2i 593 . . 3 ((∃𝑥𝑆𝑦𝑆 𝑥𝑦𝑆 ⊆ ℝ) → (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
1817ancoms 469 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
19 breq1 4656 . . . 4 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
2019ralbidv 2986 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 𝑤𝑦))
2120reu4 3400 . 2 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 ↔ (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
2218, 21sylibr 224 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wral 2912  wrex 2913  ∃!wreu 2914  wss 3574   class class class wbr 4653  cr 9935  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by:  lbcl  10974  lble  10975  uzwo2  11752
  Copyright terms: Public domain W3C validator