| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 3687 |
. . . 4
⊢ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ⊆ ℝ |
| 2 | 1 | a1i 11 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ⊆ ℝ) |
| 3 | | negfi 10971 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ∈ Fin) |
| 4 | 3 | 3adant3 1081 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ∈ Fin) |
| 5 | | negn0 10459 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ≠ ∅) |
| 6 | 5 | 3adant2 1080 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ≠ ∅) |
| 7 | | fimaxre 10968 |
. . 3
⊢ (({𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ⊆ ℝ ∧ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ∈ Fin ∧ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ≠ ∅) → ∃𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) |
| 8 | 2, 4, 6, 7 | syl3anc 1326 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
∃𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) |
| 9 | | negeq 10273 |
. . . . . . . 8
⊢ (𝑟 = 𝑛 → -𝑟 = -𝑛) |
| 10 | 9 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑟 = 𝑛 → (-𝑟 ∈ 𝐴 ↔ -𝑛 ∈ 𝐴)) |
| 11 | 10 | elrab 3363 |
. . . . . 6
⊢ (𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ↔ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) |
| 12 | | simpllr 799 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) → -𝑛 ∈ 𝐴) |
| 13 | | breq1 4656 |
. . . . . . . . . . 11
⊢ (𝑥 = -𝑛 → (𝑥 ≤ 𝑦 ↔ -𝑛 ≤ 𝑦)) |
| 14 | 13 | ralbidv 2986 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑛 → (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐴 -𝑛 ≤ 𝑦)) |
| 15 | 14 | adantl 482 |
. . . . . . . . 9
⊢
(((((𝑛 ∈
ℝ ∧ -𝑛 ∈
𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) ∧ 𝑥 = -𝑛) → (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐴 -𝑛 ≤ 𝑦)) |
| 16 | | ssel 3597 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
| 17 | | renegcl 10344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
| 18 | 16, 17 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → -𝑦 ∈ ℝ)) |
| 19 | 18 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑦 ∈ 𝐴 → -𝑦 ∈ ℝ)) |
| 20 | 19 | imp 445 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → -𝑦 ∈ ℝ) |
| 21 | 16 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
| 22 | | recn 10026 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
| 23 | 21, 22 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ)) |
| 24 | 23 | imp 445 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℂ) |
| 25 | 24 | negnegd 10383 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → --𝑦 = 𝑦) |
| 26 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 27 | 25, 26 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → --𝑦 ∈ 𝐴) |
| 28 | | negeq 10273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = -𝑦 → -𝑟 = --𝑦) |
| 29 | 28 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = -𝑦 → (-𝑟 ∈ 𝐴 ↔ --𝑦 ∈ 𝐴)) |
| 30 | 29 | elrab 3363 |
. . . . . . . . . . . . . 14
⊢ (-𝑦 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ↔ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ 𝐴)) |
| 31 | 20, 27, 30 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → -𝑦 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}) |
| 32 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = -𝑦 → (𝑚 ≤ 𝑛 ↔ -𝑦 ≤ 𝑛)) |
| 33 | 32 | rspcv 3305 |
. . . . . . . . . . . . 13
⊢ (-𝑦 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → -𝑦 ≤ 𝑛)) |
| 34 | 31, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → -𝑦 ≤ 𝑛)) |
| 35 | 21 | imp 445 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 36 | | simplll 798 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑛 ∈ ℝ) |
| 37 | | lenegcon1 10532 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑦 ≤ 𝑛 ↔ -𝑛 ≤ 𝑦)) |
| 38 | 35, 36, 37 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (-𝑦 ≤ 𝑛 ↔ -𝑛 ≤ 𝑦)) |
| 39 | 34, 38 | sylibd 229 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → -𝑛 ≤ 𝑦)) |
| 40 | 39 | impancom 456 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) → (𝑦 ∈ 𝐴 → -𝑛 ≤ 𝑦)) |
| 41 | 40 | ralrimiv 2965 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) → ∀𝑦 ∈ 𝐴 -𝑛 ≤ 𝑦) |
| 42 | 12, 15, 41 | rspcedvd 3317 |
. . . . . . . 8
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
| 43 | 42 | ex 450 |
. . . . . . 7
⊢ (((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
| 44 | 43 | ex 450 |
. . . . . 6
⊢ ((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) → (𝐴 ⊆ ℝ → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦))) |
| 45 | 11, 44 | sylbi 207 |
. . . . 5
⊢ (𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} → (𝐴 ⊆ ℝ → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦))) |
| 46 | 45 | impcom 446 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}) → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
| 47 | 46 | rexlimdva 3031 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
| 48 | 47 | 3ad2ant1 1082 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
(∃𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
| 49 | 8, 48 | mpd 15 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |