Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineset Structured version   Visualization version   GIF version

Theorem lineset 35024
Description: The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
lineset.l = (le‘𝐾)
lineset.j = (join‘𝐾)
lineset.a 𝐴 = (Atoms‘𝐾)
lineset.n 𝑁 = (Lines‘𝐾)
Assertion
Ref Expression
lineset (𝐾𝐵𝑁 = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   𝐾,𝑝,𝑞,𝑟,𝑠   ,𝑠   ,𝑠
Allowed substitution hints:   𝐵(𝑠,𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑁(𝑠,𝑟,𝑞,𝑝)

Proof of Theorem lineset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐾𝐵𝐾 ∈ V)
2 lineset.n . . 3 𝑁 = (Lines‘𝐾)
3 fveq2 6191 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 lineset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4syl6eqr 2674 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6191 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
7 lineset.l . . . . . . . . . . . . 13 = (le‘𝐾)
86, 7syl6eqr 2674 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = )
98breqd 4664 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟) ↔ 𝑝 (𝑞(join‘𝑘)𝑟)))
10 fveq2 6191 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
11 lineset.j . . . . . . . . . . . . . 14 = (join‘𝐾)
1210, 11syl6eqr 2674 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = )
1312oveqd 6667 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (𝑞(join‘𝑘)𝑟) = (𝑞 𝑟))
1413breq2d 4665 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑝 (𝑞(join‘𝑘)𝑟) ↔ 𝑝 (𝑞 𝑟)))
159, 14bitrd 268 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟) ↔ 𝑝 (𝑞 𝑟)))
165, 15rabeqbidv 3195 . . . . . . . . 9 (𝑘 = 𝐾 → {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} = {𝑝𝐴𝑝 (𝑞 𝑟)})
1716eqeq2d 2632 . . . . . . . 8 (𝑘 = 𝐾 → (𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} ↔ 𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
1817anbi2d 740 . . . . . . 7 (𝑘 = 𝐾 → ((𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) ↔ (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
195, 18rexeqbidv 3153 . . . . . 6 (𝑘 = 𝐾 → (∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) ↔ ∃𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
205, 19rexeqbidv 3153 . . . . 5 (𝑘 = 𝐾 → (∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
2120abbidv 2741 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})} = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
22 df-lines 34787 . . . 4 Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})})
23 fvex 6201 . . . . . 6 (Atoms‘𝐾) ∈ V
244, 23eqeltri 2697 . . . . 5 𝐴 ∈ V
25 df-sn 4178 . . . . . . 7 {{𝑝𝐴𝑝 (𝑞 𝑟)}} = {𝑠𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}}
26 snex 4908 . . . . . . 7 {{𝑝𝐴𝑝 (𝑞 𝑟)}} ∈ V
2725, 26eqeltrri 2698 . . . . . 6 {𝑠𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}} ∈ V
28 simpr 477 . . . . . . 7 ((𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})
2928ss2abi 3674 . . . . . 6 {𝑠 ∣ (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ⊆ {𝑠𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}}
3027, 29ssexi 4803 . . . . 5 {𝑠 ∣ (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ∈ V
3124, 24, 30ab2rexex2 7160 . . . 4 {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ∈ V
3221, 22, 31fvmpt 6282 . . 3 (𝐾 ∈ V → (Lines‘𝐾) = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
332, 32syl5eq 2668 . 2 (𝐾 ∈ V → 𝑁 = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
341, 33syl 17 1 (𝐾𝐵𝑁 = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wrex 2913  {crab 2916  Vcvv 3200  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  lecple 15948  joincjn 16944  Atomscatm 34550  Linesclines 34780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-lines 34787
This theorem is referenced by:  isline  35025
  Copyright terms: Public domain W3C validator