Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineset Structured version   Visualization version   Unicode version

Theorem lineset 35024
Description: The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
lineset.l  |-  .<_  =  ( le `  K )
lineset.j  |-  .\/  =  ( join `  K )
lineset.a  |-  A  =  ( Atoms `  K )
lineset.n  |-  N  =  ( Lines `  K )
Assertion
Ref Expression
lineset  |-  ( K  e.  B  ->  N  =  { s  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
Distinct variable groups:    q, p, r, s, A    K, p, q, r, s    .\/ , s    .<_ , s
Allowed substitution hints:    B( s, r, q, p)    .\/ ( r, q, p)    .<_ ( r, q, p)    N( s, r, q, p)

Proof of Theorem lineset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  B  ->  K  e.  _V )
2 lineset.n . . 3  |-  N  =  ( Lines `  K )
3 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 lineset.a . . . . . . 7  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2674 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
6 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
7 lineset.l . . . . . . . . . . . . 13  |-  .<_  =  ( le `  K )
86, 7syl6eqr 2674 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
98breqd 4664 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
p ( le `  k ) ( q ( join `  k
) r )  <->  p  .<_  ( q ( join `  k
) r ) ) )
10 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
11 lineset.j . . . . . . . . . . . . . 14  |-  .\/  =  ( join `  K )
1210, 11syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
1312oveqd 6667 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
q ( join `  k
) r )  =  ( q  .\/  r
) )
1413breq2d 4665 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
p  .<_  ( q (
join `  k )
r )  <->  p  .<_  ( q  .\/  r ) ) )
159, 14bitrd 268 . . . . . . . . . 10  |-  ( k  =  K  ->  (
p ( le `  k ) ( q ( join `  k
) r )  <->  p  .<_  ( q  .\/  r ) ) )
165, 15rabeqbidv 3195 . . . . . . . . 9  |-  ( k  =  K  ->  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) }  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) } )
1716eqeq2d 2632 . . . . . . . 8  |-  ( k  =  K  ->  (
s  =  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) }  <-> 
s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) )
1817anbi2d 740 . . . . . . 7  |-  ( k  =  K  ->  (
( q  =/=  r  /\  s  =  {
p  e.  ( Atoms `  k )  |  p ( le `  k
) ( q (
join `  k )
r ) } )  <-> 
( q  =/=  r  /\  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
195, 18rexeqbidv 3153 . . . . . 6  |-  ( k  =  K  ->  ( E. r  e.  ( Atoms `  k ) ( q  =/=  r  /\  s  =  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) } )  <->  E. r  e.  A  ( q  =/=  r  /\  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
205, 19rexeqbidv 3153 . . . . 5  |-  ( k  =  K  ->  ( E. q  e.  ( Atoms `  k ) E. r  e.  ( Atoms `  k ) ( q  =/=  r  /\  s  =  { p  e.  (
Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) } )  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
2120abbidv 2741 . . . 4  |-  ( k  =  K  ->  { s  |  E. q  e.  ( Atoms `  k ) E. r  e.  ( Atoms `  k ) ( q  =/=  r  /\  s  =  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) } ) }  =  {
s  |  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) } )
22 df-lines 34787 . . . 4  |-  Lines  =  ( k  e.  _V  |->  { s  |  E. q  e.  ( Atoms `  k ) E. r  e.  ( Atoms `  k ) ( q  =/=  r  /\  s  =  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) } ) } )
23 fvex 6201 . . . . . 6  |-  ( Atoms `  K )  e.  _V
244, 23eqeltri 2697 . . . . 5  |-  A  e. 
_V
25 df-sn 4178 . . . . . . 7  |-  { {
p  e.  A  |  p  .<_  ( q  .\/  r ) } }  =  { s  |  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) } }
26 snex 4908 . . . . . . 7  |-  { {
p  e.  A  |  p  .<_  ( q  .\/  r ) } }  e.  _V
2725, 26eqeltrri 2698 . . . . . 6  |-  { s  |  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } }  e.  _V
28 simpr 477 . . . . . . 7  |-  ( ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } )  -> 
s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } )
2928ss2abi 3674 . . . . . 6  |-  { s  |  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) }  C_  { s  |  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } }
3027, 29ssexi 4803 . . . . 5  |-  { s  |  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) }  e.  _V
3124, 24, 30ab2rexex2 7160 . . . 4  |-  { s  |  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) }  e.  _V
3221, 22, 31fvmpt 6282 . . 3  |-  ( K  e.  _V  ->  ( Lines `  K )  =  { s  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
332, 32syl5eq 2668 . 2  |-  ( K  e.  _V  ->  N  =  { s  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
341, 33syl 17 1  |-  ( K  e.  B  ->  N  =  { s  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Atomscatm 34550   Linesclines 34780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-lines 34787
This theorem is referenced by:  isline  35025
  Copyright terms: Public domain W3C validator