Proof of Theorem llnexatN
Step | Hyp | Ref
| Expression |
1 | | simp1 1061 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ HL) |
2 | | simp3 1063 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
3 | | simp2 1062 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) → 𝑋 ∈ 𝑁) |
4 | 1, 2, 3 | 3jca 1242 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁)) |
5 | | llnexat.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
6 | | eqid 2622 |
. . . 4
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
7 | | llnexat.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | llnexat.n |
. . . 4
⊢ 𝑁 = (LLines‘𝐾) |
9 | 5, 6, 7, 8 | atcvrlln2 34805 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → 𝑃( ⋖ ‘𝐾)𝑋) |
10 | 4, 9 | sylan 488 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃( ⋖ ‘𝐾)𝑋) |
11 | | simpl1 1064 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ HL) |
12 | | simpl3 1066 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) |
13 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
14 | 13, 7 | atbase 34576 |
. . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
15 | 12, 14 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ (Base‘𝐾)) |
16 | | simpl2 1065 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝑁) |
17 | 13, 8 | llnbase 34795 |
. . . . 5
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
18 | 16, 17 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ (Base‘𝐾)) |
19 | | llnexat.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
20 | 13, 5, 19, 6, 7 | cvrval3 34699 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑃( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑃 ∧ (𝑃 ∨ 𝑞) = 𝑋))) |
21 | 11, 15, 18, 20 | syl3anc 1326 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (𝑃( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑃 ∧ (𝑃 ∨ 𝑞) = 𝑋))) |
22 | | simpll1 1100 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ HL) |
23 | | hlatl 34647 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ AtLat) |
25 | | simpr 477 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) |
26 | | simpll3 1102 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) ∧ 𝑞 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
27 | 5, 7 | atncmp 34599 |
. . . . . . 7
⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑞 ≤ 𝑃 ↔ 𝑞 ≠ 𝑃)) |
28 | 24, 25, 26, 27 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞 ≤ 𝑃 ↔ 𝑞 ≠ 𝑃)) |
29 | 28 | anbi1d 741 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞 ≤ 𝑃 ∧ (𝑃 ∨ 𝑞) = 𝑋) ↔ (𝑞 ≠ 𝑃 ∧ (𝑃 ∨ 𝑞) = 𝑋))) |
30 | | necom 2847 |
. . . . . 6
⊢ (𝑞 ≠ 𝑃 ↔ 𝑃 ≠ 𝑞) |
31 | | eqcom 2629 |
. . . . . 6
⊢ ((𝑃 ∨ 𝑞) = 𝑋 ↔ 𝑋 = (𝑃 ∨ 𝑞)) |
32 | 30, 31 | anbi12i 733 |
. . . . 5
⊢ ((𝑞 ≠ 𝑃 ∧ (𝑃 ∨ 𝑞) = 𝑋) ↔ (𝑃 ≠ 𝑞 ∧ 𝑋 = (𝑃 ∨ 𝑞))) |
33 | 29, 32 | syl6bb 276 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞 ≤ 𝑃 ∧ (𝑃 ∨ 𝑞) = 𝑋) ↔ (𝑃 ≠ 𝑞 ∧ 𝑋 = (𝑃 ∨ 𝑞)))) |
34 | 33 | rexbidva 3049 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑃 ∧ (𝑃 ∨ 𝑞) = 𝑋) ↔ ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ 𝑋 = (𝑃 ∨ 𝑞)))) |
35 | 21, 34 | bitrd 268 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (𝑃( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ 𝑋 = (𝑃 ∨ 𝑞)))) |
36 | 10, 35 | mpbid 222 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ 𝑋 = (𝑃 ∨ 𝑞))) |