| Step | Hyp | Ref
| Expression |
| 1 | | simpl2 1065 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → 𝑋 ∈ 𝑃) |
| 2 | | simpl1 1064 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → 𝐾 ∈ HL) |
| 3 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 4 | | lplnexat.p |
. . . . . 6
⊢ 𝑃 = (LPlanes‘𝐾) |
| 5 | 3, 4 | lplnbase 34820 |
. . . . 5
⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
| 6 | 1, 5 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → 𝑋 ∈ (Base‘𝐾)) |
| 7 | | lplnexat.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 8 | | lplnexat.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 9 | | lplnexat.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 10 | | lplnexat.n |
. . . . 5
⊢ 𝑁 = (LLines‘𝐾) |
| 11 | 3, 7, 8, 9, 10, 4 | islpln3 34819 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 ∈ 𝑃 ↔ ∃𝑧 ∈ 𝑁 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) |
| 12 | 2, 6, 11 | syl2anc 693 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → (𝑋 ∈ 𝑃 ↔ ∃𝑧 ∈ 𝑁 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) |
| 13 | 1, 12 | mpbid 222 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → ∃𝑧 ∈ 𝑁 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) |
| 14 | | simpll1 1100 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝐾 ∈ HL) |
| 15 | | simpr2l 1120 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ∈ 𝑁) |
| 16 | | simpll3 1102 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ∈ 𝐴) |
| 17 | | simpr1 1067 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ≤ 𝑧) |
| 18 | 7, 8, 9, 10 | llnexatN 34807 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑧 ∈ 𝑁 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑧) → ∃𝑠 ∈ 𝐴 (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠))) |
| 19 | 14, 15, 16, 17, 18 | syl31anc 1329 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ∃𝑠 ∈ 𝐴 (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠))) |
| 20 | | simp1l1 1154 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝐾 ∈ HL) |
| 21 | | simp22r 1181 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑟 ∈ 𝐴) |
| 22 | | simp3l 1089 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑠 ∈ 𝐴) |
| 23 | | simp1l3 1156 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑄 ∈ 𝐴) |
| 24 | | simp23l 1182 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ¬ 𝑟 ≤ 𝑧) |
| 25 | | simp3rr 1135 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑧 = (𝑄 ∨ 𝑠)) |
| 26 | 25 | breq2d 4665 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → (𝑟 ≤ 𝑧 ↔ 𝑟 ≤ (𝑄 ∨ 𝑠))) |
| 27 | 24, 26 | mtbid 314 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ¬ 𝑟 ≤ (𝑄 ∨ 𝑠)) |
| 28 | 7, 8, 9 | atnlej2 34666 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑟 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ ¬ 𝑟 ≤ (𝑄 ∨ 𝑠)) → 𝑟 ≠ 𝑠) |
| 29 | 20, 21, 23, 22, 27, 28 | syl131anc 1339 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑟 ≠ 𝑠) |
| 30 | 8, 9, 10 | llni2 34798 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑟 ≠ 𝑠) → (𝑟 ∨ 𝑠) ∈ 𝑁) |
| 31 | 20, 21, 22, 29, 30 | syl31anc 1329 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → (𝑟 ∨ 𝑠) ∈ 𝑁) |
| 32 | | simp3rl 1134 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑄 ≠ 𝑠) |
| 33 | 7, 8, 9 | hlatcon2 34738 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑄 ≠ 𝑠 ∧ ¬ 𝑟 ≤ (𝑄 ∨ 𝑠))) → ¬ 𝑄 ≤ (𝑟 ∨ 𝑠)) |
| 34 | 20, 23, 22, 21, 32, 27, 33 | syl132anc 1344 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ¬ 𝑄 ≤ (𝑟 ∨ 𝑠)) |
| 35 | | simp23r 1183 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑋 = (𝑧 ∨ 𝑟)) |
| 36 | 25 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → (𝑧 ∨ 𝑟) = ((𝑄 ∨ 𝑠) ∨ 𝑟)) |
| 37 | | hllat 34650 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 38 | 20, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝐾 ∈ Lat) |
| 39 | 3, 9 | atbase 34576 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 40 | 23, 39 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑄 ∈ (Base‘𝐾)) |
| 41 | 3, 9 | atbase 34576 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ 𝐴 → 𝑠 ∈ (Base‘𝐾)) |
| 42 | 22, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑠 ∈ (Base‘𝐾)) |
| 43 | 3, 9 | atbase 34576 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ (Base‘𝐾)) |
| 44 | 21, 43 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑟 ∈ (Base‘𝐾)) |
| 45 | 3, 8 | latj31 17099 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾))) → ((𝑄 ∨ 𝑠) ∨ 𝑟) = ((𝑟 ∨ 𝑠) ∨ 𝑄)) |
| 46 | 38, 40, 42, 44, 45 | syl13anc 1328 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ((𝑄 ∨ 𝑠) ∨ 𝑟) = ((𝑟 ∨ 𝑠) ∨ 𝑄)) |
| 47 | 35, 36, 46 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑋 = ((𝑟 ∨ 𝑠) ∨ 𝑄)) |
| 48 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑟 ∨ 𝑠) → (𝑄 ≤ 𝑦 ↔ 𝑄 ≤ (𝑟 ∨ 𝑠))) |
| 49 | 48 | notbid 308 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑟 ∨ 𝑠) → (¬ 𝑄 ≤ 𝑦 ↔ ¬ 𝑄 ≤ (𝑟 ∨ 𝑠))) |
| 50 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑟 ∨ 𝑠) → (𝑦 ∨ 𝑄) = ((𝑟 ∨ 𝑠) ∨ 𝑄)) |
| 51 | 50 | eqeq2d 2632 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑟 ∨ 𝑠) → (𝑋 = (𝑦 ∨ 𝑄) ↔ 𝑋 = ((𝑟 ∨ 𝑠) ∨ 𝑄))) |
| 52 | 49, 51 | anbi12d 747 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑟 ∨ 𝑠) → ((¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)) ↔ (¬ 𝑄 ≤ (𝑟 ∨ 𝑠) ∧ 𝑋 = ((𝑟 ∨ 𝑠) ∨ 𝑄)))) |
| 53 | 52 | rspcev 3309 |
. . . . . . . . . 10
⊢ (((𝑟 ∨ 𝑠) ∈ 𝑁 ∧ (¬ 𝑄 ≤ (𝑟 ∨ 𝑠) ∧ 𝑋 = ((𝑟 ∨ 𝑠) ∨ 𝑄))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
| 54 | 31, 34, 47, 53 | syl12anc 1324 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
| 55 | 54 | 3expia 1267 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ((𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))) |
| 56 | 55 | expd 452 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑠 ∈ 𝐴 → ((𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))))) |
| 57 | 56 | rexlimdv 3030 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (∃𝑠 ∈ 𝐴 (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))) |
| 58 | 19, 57 | mpd 15 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
| 59 | 58 | 3exp2 1285 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → (𝑄 ≤ 𝑧 → ((𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) → ((¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))))) |
| 60 | | simpr2l 1120 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ∈ 𝑁) |
| 61 | | simpr1 1067 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ¬ 𝑄 ≤ 𝑧) |
| 62 | | simpll1 1100 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝐾 ∈ HL) |
| 63 | 62, 37 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝐾 ∈ Lat) |
| 64 | 3, 10 | llnbase 34795 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑁 → 𝑧 ∈ (Base‘𝐾)) |
| 65 | 60, 64 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ∈ (Base‘𝐾)) |
| 66 | | simpr2r 1121 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑟 ∈ 𝐴) |
| 67 | 66, 43 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑟 ∈ (Base‘𝐾)) |
| 68 | 3, 7, 8 | latlej1 17060 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑧 ≤ (𝑧 ∨ 𝑟)) |
| 69 | 63, 65, 67, 68 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ≤ (𝑧 ∨ 𝑟)) |
| 70 | | simpr3r 1123 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑋 = (𝑧 ∨ 𝑟)) |
| 71 | 69, 70 | breqtrrd 4681 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ≤ 𝑋) |
| 72 | | simplr 792 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ≤ 𝑋) |
| 73 | | simpll3 1102 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ∈ 𝐴) |
| 74 | 73, 39 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ∈ (Base‘𝐾)) |
| 75 | | simpll2 1101 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑋 ∈ 𝑃) |
| 76 | 75, 5 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑋 ∈ (Base‘𝐾)) |
| 77 | 3, 7, 8 | latjle12 17062 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑧 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋) ↔ (𝑧 ∨ 𝑄) ≤ 𝑋)) |
| 78 | 63, 65, 74, 76, 77 | syl13anc 1328 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ((𝑧 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋) ↔ (𝑧 ∨ 𝑄) ≤ 𝑋)) |
| 79 | 71, 72, 78 | mpbi2and 956 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑧 ∨ 𝑄) ≤ 𝑋) |
| 80 | 3, 8 | latjcl 17051 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑧 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 81 | 63, 65, 74, 80 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑧 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 82 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
| 83 | 3, 7, 8, 82, 9 | cvr1 34696 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → (¬ 𝑄 ≤ 𝑧 ↔ 𝑧( ⋖ ‘𝐾)(𝑧 ∨ 𝑄))) |
| 84 | 62, 65, 73, 83 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (¬ 𝑄 ≤ 𝑧 ↔ 𝑧( ⋖ ‘𝐾)(𝑧 ∨ 𝑄))) |
| 85 | 61, 84 | mpbid 222 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧( ⋖ ‘𝐾)(𝑧 ∨ 𝑄)) |
| 86 | 3, 82, 10, 4 | lplni 34818 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑧 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ 𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧 ∨ 𝑄)) → (𝑧 ∨ 𝑄) ∈ 𝑃) |
| 87 | 62, 81, 60, 85, 86 | syl31anc 1329 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑧 ∨ 𝑄) ∈ 𝑃) |
| 88 | 7, 4 | lplncmp 34848 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑧 ∨ 𝑄) ∈ 𝑃 ∧ 𝑋 ∈ 𝑃) → ((𝑧 ∨ 𝑄) ≤ 𝑋 ↔ (𝑧 ∨ 𝑄) = 𝑋)) |
| 89 | 62, 87, 75, 88 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ((𝑧 ∨ 𝑄) ≤ 𝑋 ↔ (𝑧 ∨ 𝑄) = 𝑋)) |
| 90 | 79, 89 | mpbid 222 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑧 ∨ 𝑄) = 𝑋) |
| 91 | 90 | eqcomd 2628 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑋 = (𝑧 ∨ 𝑄)) |
| 92 | | breq2 4657 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑄 ≤ 𝑦 ↔ 𝑄 ≤ 𝑧)) |
| 93 | 92 | notbid 308 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (¬ 𝑄 ≤ 𝑦 ↔ ¬ 𝑄 ≤ 𝑧)) |
| 94 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑦 ∨ 𝑄) = (𝑧 ∨ 𝑄)) |
| 95 | 94 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑋 = (𝑦 ∨ 𝑄) ↔ 𝑋 = (𝑧 ∨ 𝑄))) |
| 96 | 93, 95 | anbi12d 747 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)) ↔ (¬ 𝑄 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑄)))) |
| 97 | 96 | rspcev 3309 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑁 ∧ (¬ 𝑄 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑄))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
| 98 | 60, 61, 91, 97 | syl12anc 1324 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
| 99 | 98 | 3exp2 1285 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → (¬ 𝑄 ≤ 𝑧 → ((𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) → ((¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))))) |
| 100 | 59, 99 | pm2.61d 170 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → ((𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) → ((¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))))) |
| 101 | 100 | rexlimdvv 3037 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → (∃𝑧 ∈ 𝑁 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))) |
| 102 | 13, 101 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |