Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnexllnN Structured version   Visualization version   GIF version

Theorem lplnexllnN 34850
Description: Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnexat.l = (le‘𝐾)
lplnexat.j = (join‘𝐾)
lplnexat.a 𝐴 = (Atoms‘𝐾)
lplnexat.n 𝑁 = (LLines‘𝐾)
lplnexat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnexllnN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Distinct variable groups:   𝑦,   𝑦,   𝑦,𝑁   𝑦,𝑄   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑦)   𝐾(𝑦)

Proof of Theorem lplnexllnN
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1065 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋𝑃)
2 simpl1 1064 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝐾 ∈ HL)
3 eqid 2622 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 lplnexat.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
53, 4lplnbase 34820 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋 ∈ (Base‘𝐾))
7 lplnexat.l . . . . 5 = (le‘𝐾)
8 lplnexat.j . . . . 5 = (join‘𝐾)
9 lplnexat.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 lplnexat.n . . . . 5 𝑁 = (LLines‘𝐾)
113, 7, 8, 9, 10, 4islpln3 34819 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
122, 6, 11syl2anc 693 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
131, 12mpbid 222 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)))
14 simpll1 1100 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
15 simpr2l 1120 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
16 simpll3 1102 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
17 simpr1 1067 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑧)
187, 8, 9, 10llnexatN 34807 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑧𝑁𝑄𝐴) ∧ 𝑄 𝑧) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
1914, 15, 16, 17, 18syl31anc 1329 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
20 simp1l1 1154 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ HL)
21 simp22r 1181 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝐴)
22 simp3l 1089 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠𝐴)
23 simp1l3 1156 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝐴)
24 simp23l 1182 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 𝑧)
25 simp3rr 1135 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑧 = (𝑄 𝑠))
2625breq2d 4665 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑧𝑟 (𝑄 𝑠)))
2724, 26mtbid 314 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 (𝑄 𝑠))
287, 8, 9atnlej2 34666 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑠𝐴) ∧ ¬ 𝑟 (𝑄 𝑠)) → 𝑟𝑠)
2920, 21, 23, 22, 27, 28syl131anc 1339 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝑠)
308, 9, 10llni2 34798 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) ∧ 𝑟𝑠) → (𝑟 𝑠) ∈ 𝑁)
3120, 21, 22, 29, 30syl31anc 1329 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑠) ∈ 𝑁)
32 simp3rl 1134 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝑠)
337, 8, 9hlatcon2 34738 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑠𝐴𝑟𝐴) ∧ (𝑄𝑠 ∧ ¬ 𝑟 (𝑄 𝑠))) → ¬ 𝑄 (𝑟 𝑠))
3420, 23, 22, 21, 32, 27, 33syl132anc 1344 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑄 (𝑟 𝑠))
35 simp23r 1183 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = (𝑧 𝑟))
3625oveq1d 6665 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑧 𝑟) = ((𝑄 𝑠) 𝑟))
37 hllat 34650 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3820, 37syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ Lat)
393, 9atbase 34576 . . . . . . . . . . . . 13 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
4023, 39syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄 ∈ (Base‘𝐾))
413, 9atbase 34576 . . . . . . . . . . . . 13 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
4222, 41syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠 ∈ (Base‘𝐾))
433, 9atbase 34576 . . . . . . . . . . . . 13 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
4421, 43syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟 ∈ (Base‘𝐾))
453, 8latj31 17099 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4638, 40, 42, 44, 45syl13anc 1328 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4735, 36, 463eqtrd 2660 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = ((𝑟 𝑠) 𝑄))
48 breq2 4657 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑄 𝑦𝑄 (𝑟 𝑠)))
4948notbid 308 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 (𝑟 𝑠)))
50 oveq1 6657 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑦 𝑄) = ((𝑟 𝑠) 𝑄))
5150eqeq2d 2632 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = ((𝑟 𝑠) 𝑄)))
5249, 51anbi12d 747 . . . . . . . . . . 11 (𝑦 = (𝑟 𝑠) → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))))
5352rspcev 3309 . . . . . . . . . 10 (((𝑟 𝑠) ∈ 𝑁 ∧ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
5431, 34, 47, 53syl12anc 1324 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
55543expia 1267 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5655expd 452 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑠𝐴 → ((𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
5756rexlimdv 3030 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5819, 57mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
59583exp2 1285 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
60 simpr2l 1120 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
61 simpr1 1067 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ¬ 𝑄 𝑧)
62 simpll1 1100 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
6362, 37syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ Lat)
643, 10llnbase 34795 . . . . . . . . . . . 12 (𝑧𝑁𝑧 ∈ (Base‘𝐾))
6560, 64syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 ∈ (Base‘𝐾))
66 simpr2r 1121 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟𝐴)
6766, 43syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟 ∈ (Base‘𝐾))
683, 7, 8latlej1 17060 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑧 (𝑧 𝑟))
6963, 65, 67, 68syl3anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 (𝑧 𝑟))
70 simpr3r 1123 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑟))
7169, 70breqtrrd 4681 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 𝑋)
72 simplr 792 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑋)
73 simpll3 1102 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
7473, 39syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 ∈ (Base‘𝐾))
75 simpll2 1101 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋𝑃)
7675, 5syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 ∈ (Base‘𝐾))
773, 7, 8latjle12 17062 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7863, 65, 74, 76, 77syl13anc 1328 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7971, 72, 78mpbi2and 956 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) 𝑋)
803, 8latjcl 17051 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑧 𝑄) ∈ (Base‘𝐾))
8163, 65, 74, 80syl3anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ (Base‘𝐾))
82 eqid 2622 . . . . . . . . . . . . 13 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
833, 7, 8, 82, 9cvr1 34696 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8462, 65, 73, 83syl3anc 1326 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8561, 84mpbid 222 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧( ⋖ ‘𝐾)(𝑧 𝑄))
863, 82, 10, 4lplni 34818 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ (Base‘𝐾) ∧ 𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧 𝑄)) → (𝑧 𝑄) ∈ 𝑃)
8762, 81, 60, 85, 86syl31anc 1329 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ 𝑃)
887, 4lplncmp 34848 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ 𝑃𝑋𝑃) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
8962, 87, 75, 88syl3anc 1326 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
9079, 89mpbid 222 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) = 𝑋)
9190eqcomd 2628 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑄))
92 breq2 4657 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑄 𝑦𝑄 𝑧))
9392notbid 308 . . . . . . . 8 (𝑦 = 𝑧 → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 𝑧))
94 oveq1 6657 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 𝑄) = (𝑧 𝑄))
9594eqeq2d 2632 . . . . . . . 8 (𝑦 = 𝑧 → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = (𝑧 𝑄)))
9693, 95anbi12d 747 . . . . . . 7 (𝑦 = 𝑧 → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))))
9796rspcev 3309 . . . . . 6 ((𝑧𝑁 ∧ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
9860, 61, 91, 97syl12anc 1324 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
99983exp2 1285 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (¬ 𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
10059, 99pm2.61d 170 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
101100rexlimdvv 3037 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
10213, 101mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  Latclat 17045  ccvr 34549  Atomscatm 34550  HLchlt 34637  LLinesclln 34777  LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator