MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bdd2 Structured version   Visualization version   GIF version

Theorem lo1bdd2 14255
Description: If an eventually bounded function is bounded on every interval 𝐴 ∩ (-∞, 𝑦) by a function 𝑀(𝑦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
lo1bdd2.1 (𝜑𝐴 ⊆ ℝ)
lo1bdd2.2 (𝜑𝐶 ∈ ℝ)
lo1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
lo1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
Assertion
Ref Expression
lo1bdd2 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑚,𝑀,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem lo1bdd2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1bdd2.1 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 lo1bdd2.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 lo1bdd2.2 . . . 4 (𝜑𝐶 ∈ ℝ)
52, 3, 4ello1mpt2 14253 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛)))
61, 5mpbid 222 . 2 (𝜑 → ∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))
7 elicopnf 12269 . . . . . . . . . . 11 (𝐶 ∈ ℝ → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶𝑦)))
84, 7syl 17 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶𝑦)))
98biimpa 501 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (𝑦 ∈ ℝ ∧ 𝐶𝑦))
10 lo1bdd2.5 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
119, 10syldan 487 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → 𝑀 ∈ ℝ)
1211ad2antrr 762 . . . . . . 7 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) ∧ 𝑛𝑀) → 𝑀 ∈ ℝ)
13 simplrl 800 . . . . . . 7 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) ∧ ¬ 𝑛𝑀) → 𝑛 ∈ ℝ)
1412, 13ifclda 4120 . . . . . 6 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ)
152ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → 𝐴 ⊆ ℝ)
1615sselda 3603 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
179simpld 475 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → 𝑦 ∈ ℝ)
1817ad2antrr 762 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
1916, 18ltnled 10184 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
20 lo1bdd2.6 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
2120expr 643 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → (𝑥 < 𝑦𝐵𝑀))
2221an32s 846 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
2322ex 450 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → (𝑥𝐴 → (𝑥 < 𝑦𝐵𝑀)))
249, 23syldan 487 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (𝑥𝐴 → (𝑥 < 𝑦𝐵𝑀)))
2524imp 445 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
2625adantlr 751 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
27 simplr 792 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
2811ad2antrr 762 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑀 ∈ ℝ)
29 max2 12018 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛))
3027, 28, 29syl2anc 693 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛))
31 simpll 790 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → 𝜑)
3231, 3sylan 488 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
3311ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑛𝑀) → 𝑀 ∈ ℝ)
34 simpllr 799 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) ∧ ¬ 𝑛𝑀) → 𝑛 ∈ ℝ)
3533, 34ifclda 4120 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ)
36 letr 10131 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵𝑀𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3732, 28, 35, 36syl3anc 1326 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑀𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3830, 37mpan2d 710 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑀𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3926, 38syld 47 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4019, 39sylbird 250 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (¬ 𝑦𝑥𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
41 max1 12016 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛))
4227, 28, 41syl2anc 693 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛))
43 letr 10131 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4432, 27, 35, 43syl3anc 1326 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4542, 44mpan2d 710 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4640, 45jad 174 . . . . . . . 8 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦𝑥𝐵𝑛) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4746ralimdva 2962 . . . . . . 7 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4847impr 649 . . . . . 6 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛))
49 breq2 4657 . . . . . . . 8 (𝑚 = if(𝑛𝑀, 𝑀, 𝑛) → (𝐵𝑚𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
5049ralbidv 2986 . . . . . . 7 (𝑚 = if(𝑛𝑀, 𝑀, 𝑛) → (∀𝑥𝐴 𝐵𝑚 ↔ ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
5150rspcev 3309 . . . . . 6 ((if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ ∧ ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
5214, 48, 51syl2anc 693 . . . . 5 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
5352expr 643 . . . 4 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
5453rexlimdva 3031 . . 3 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
5554rexlimdva 3031 . 2 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
566, 55mpd 15 1 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  (class class class)co 6650  cr 9935  +∞cpnf 10071   < clt 10074  cle 10075  [,)cico 12177  ≤𝑂(1)clo1 14218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181  df-lo1 14222
This theorem is referenced by:  lo1bddrp  14256  o1bdd2  14272
  Copyright terms: Public domain W3C validator