Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncmp Structured version   Visualization version   GIF version

Theorem lplncmp 34848
Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
lplncmp.l = (le‘𝐾)
lplncmp.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplncmp ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lplncmp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋𝑃)
2 simp1 1061 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
3 eqid 2622 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 lplncmp.p . . . . . . 7 𝑃 = (LPlanes‘𝐾)
53, 4lplnbase 34820 . . . . . 6 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
653ad2ant2 1083 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2622 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2622 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
93, 7, 8, 4islpln4 34817 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑃 ↔ ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 693 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋𝑃 ↔ ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
111, 10mpbid 222 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)
12 simpr3 1069 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 34652 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1082 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ Poset)
1514adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1066 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑃)
183, 4lplnbase 34820 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1067 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (LLines‘𝐾))
213, 8llnbase 34795 . . . . . . . 8 (𝑧 ∈ (LLines‘𝐾) → 𝑧 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (Base‘𝐾))
23 simpr2 1068 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑋)
24 simpl1 1064 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 lplncmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 34565 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑧( ⋖ ‘𝐾)𝑋) → 𝑧 𝑋)
2724, 22, 16, 23, 26syl31anc 1329 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑋)
283, 25postr 16953 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
2915, 22, 16, 19, 28syl13anc 1328 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
3027, 12, 29mp2and 715 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑌)
3125, 7, 8, 4llncvrlpln2 34843 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑧 ∈ (LLines‘𝐾) ∧ 𝑌𝑃) ∧ 𝑧 𝑌) → 𝑧( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1329 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 34570 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑧( ⋖ ‘𝐾)𝑋𝑧( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1344 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 222 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1285 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑧 ∈ (LLines‘𝐾) → (𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3030 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 16951 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 693 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 𝑋)
41 breq2 4657 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 235 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 202 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  Posetcpo 16940  ccvr 34549  HLchlt 34637  LLinesclln 34777  LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  lplnexllnN  34850  lplnnlt  34851  2llnjaN  34852  dalem-cly  34957  dalem44  35002
  Copyright terms: Public domain W3C validator