MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalix Structured version   Visualization version   GIF version

Theorem lsmelvalix 18056
Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelvalix (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))

Proof of Theorem lsmelvalix
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (𝑋 + 𝑌) = (𝑋 + 𝑌)
2 rspceov 6692 . . 3 ((𝑋𝑇𝑌𝑈 ∧ (𝑋 + 𝑌) = (𝑋 + 𝑌)) → ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))
31, 2mp3an3 1413 . 2 ((𝑋𝑇𝑌𝑈) → ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))
4 lsmfval.v . . . 4 𝐵 = (Base‘𝐺)
5 lsmfval.a . . . 4 + = (+g𝐺)
6 lsmfval.s . . . 4 = (LSSum‘𝐺)
74, 5, 6lsmelvalx 18055 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → ((𝑋 + 𝑌) ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)))
87biimpar 502 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
93, 8sylan2 491 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lsm 18051
This theorem is referenced by:  lsmub1x  18061  lsmub2x  18062  lsmelvali  18065  lsmsubm  18068  kercvrlsm  37653
  Copyright terms: Public domain W3C validator