![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltexpri | Structured version Visualization version GIF version |
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexpri | ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr 9820 | . . 3 ⊢ <P ⊆ (P × P) | |
2 | 1 | brel 5168 | . 2 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
3 | ltprord 9852 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
4 | oveq2 6658 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑧 → (𝑤 +Q 𝑦) = (𝑤 +Q 𝑧)) | |
5 | 4 | eleq1d 2686 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑧 → ((𝑤 +Q 𝑦) ∈ 𝐵 ↔ (𝑤 +Q 𝑧) ∈ 𝐵)) |
6 | 5 | anbi2d 740 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → ((¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ (¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵))) |
7 | 6 | exbidv 1850 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵))) |
8 | 7 | cbvabv 2747 | . . . . . . 7 ⊢ {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} = {𝑧 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)} |
9 | 8 | ltexprlem5 9862 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P) |
10 | 9 | adantll 750 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P) |
11 | 8 | ltexprlem6 9863 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) ⊆ 𝐵) |
12 | 8 | ltexprlem7 9864 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → 𝐵 ⊆ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)})) |
13 | 11, 12 | eqssd 3620 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) |
14 | oveq2 6658 | . . . . . . 7 ⊢ (𝑥 = {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → (𝐴 +P 𝑥) = (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)})) | |
15 | 14 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑥 = {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵)) |
16 | 15 | rspcev 3309 | . . . . 5 ⊢ (({𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P ∧ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
17 | 10, 13, 16 | syl2anc 693 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
18 | 17 | ex 450 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) |
19 | 3, 18 | sylbid 230 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) |
20 | 2, 19 | mpcom 38 | 1 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ∃wrex 2913 ⊊ wpss 3575 class class class wbr 4653 (class class class)co 6650 +Q cplq 9677 Pcnp 9681 +P cpp 9683 <P cltp 9685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-mq 9737 df-1nq 9738 df-rq 9739 df-ltnq 9740 df-np 9803 df-plp 9805 df-ltp 9807 |
This theorem is referenced by: ltaprlem 9866 recexsrlem 9924 mulgt0sr 9926 map2psrpr 9931 |
Copyright terms: Public domain | W3C validator |