MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map1 Structured version   Visualization version   Unicode version

Theorem map1 8036
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
map1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )

Proof of Theorem map1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6680 . 2  |-  ( A  e.  V  ->  ( 1o  ^m  A )  e. 
_V )
2 df1o2 7572 . . . 4  |-  1o  =  { (/) }
3 p0ex 4853 . . . 4  |-  { (/) }  e.  _V
42, 3eqeltri 2697 . . 3  |-  1o  e.  _V
54a1i 11 . 2  |-  ( A  e.  V  ->  1o  e.  _V )
6 0ex 4790 . . 3  |-  (/)  e.  _V
762a1i 12 . 2  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  ->  (/) 
e.  _V ) )
8 xpexg 6960 . . . 4  |-  ( ( A  e.  V  /\  {
(/) }  e.  _V )  ->  ( A  X.  { (/) } )  e. 
_V )
93, 8mpan2 707 . . 3  |-  ( A  e.  V  ->  ( A  X.  { (/) } )  e.  _V )
109a1d 25 . 2  |-  ( A  e.  V  ->  (
y  e.  1o  ->  ( A  X.  { (/) } )  e.  _V )
)
11 el1o 7579 . . . . 5  |-  ( y  e.  1o  <->  y  =  (/) )
1211a1i 11 . . . 4  |-  ( A  e.  V  ->  (
y  e.  1o  <->  y  =  (/) ) )
132oveq1i 6660 . . . . . . 7  |-  ( 1o 
^m  A )  =  ( { (/) }  ^m  A )
1413eleq2i 2693 . . . . . 6  |-  ( x  e.  ( 1o  ^m  A )  <->  x  e.  ( { (/) }  ^m  A
) )
15 elmapg 7870 . . . . . . 7  |-  ( ( { (/) }  e.  _V  /\  A  e.  V )  ->  ( x  e.  ( { (/) }  ^m  A )  <->  x : A
--> { (/) } ) )
163, 15mpan 706 . . . . . 6  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }  ^m  A )  <-> 
x : A --> { (/) } ) )
1714, 16syl5bb 272 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  <->  x : A
--> { (/) } ) )
186fconst2 6470 . . . . 5  |-  ( x : A --> { (/) }  <-> 
x  =  ( A  X.  { (/) } ) )
1917, 18syl6rbb 277 . . . 4  |-  ( A  e.  V  ->  (
x  =  ( A  X.  { (/) } )  <-> 
x  e.  ( 1o 
^m  A ) ) )
2012, 19anbi12d 747 . . 3  |-  ( A  e.  V  ->  (
( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) )  <->  ( y  =  (/)  /\  x  e.  ( 1o  ^m  A ) ) ) )
21 ancom 466 . . 3  |-  ( ( y  =  (/)  /\  x  e.  ( 1o  ^m  A
) )  <->  ( x  e.  ( 1o  ^m  A
)  /\  y  =  (/) ) )
2220, 21syl6rbb 277 . 2  |-  ( A  e.  V  ->  (
( x  e.  ( 1o  ^m  A )  /\  y  =  (/) ) 
<->  ( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) ) ) )
231, 5, 7, 10, 22en2d 7991 1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   -->wf 5884  (class class class)co 6650   1oc1o 7553    ^m cmap 7857    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-map 7859  df-en 7956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator