Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapsnop Structured version   Visualization version   GIF version

Theorem mapsnop 42123
Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019.)
Hypothesis
Ref Expression
mapsnop.f 𝐹 = {⟨𝑋, 𝑌⟩}
Assertion
Ref Expression
mapsnop ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹 ∈ (𝑅𝑚 {𝑋}))

Proof of Theorem mapsnop
StepHypRef Expression
1 mapsnop.f . . . 4 𝐹 = {⟨𝑋, 𝑌⟩}
2 fsng 6404 . . . . 5 ((𝑋𝑉𝑌𝑅) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩}))
323adant3 1081 . . . 4 ((𝑋𝑉𝑌𝑅𝑅𝑊) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩}))
41, 3mpbiri 248 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹:{𝑋}⟶{𝑌})
5 snssi 4339 . . . 4 (𝑌𝑅 → {𝑌} ⊆ 𝑅)
653ad2ant2 1083 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → {𝑌} ⊆ 𝑅)
74, 6fssd 6057 . 2 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹:{𝑋}⟶𝑅)
8 simp3 1063 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝑅𝑊)
9 snex 4908 . . 3 {𝑋} ∈ V
10 elmapg 7870 . . 3 ((𝑅𝑊 ∧ {𝑋} ∈ V) → (𝐹 ∈ (𝑅𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅))
118, 9, 10sylancl 694 . 2 ((𝑋𝑉𝑌𝑅𝑅𝑊) → (𝐹 ∈ (𝑅𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅))
127, 11mpbird 247 1 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹 ∈ (𝑅𝑚 {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  {csn 4177  cop 4183  wf 5884  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859
This theorem is referenced by:  lincvalsng  42205  lcosn0  42209
  Copyright terms: Public domain W3C validator