| Step | Hyp | Ref
| Expression |
| 1 | | marrepfval.q |
. 2
⊢ 𝑄 = (𝑁 matRRep 𝑅) |
| 2 | | marrepfval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
| 3 | | fvex 6201 |
. . . . . 6
⊢
(Base‘𝐴)
∈ V |
| 4 | 2, 3 | eqeltri 2697 |
. . . . 5
⊢ 𝐵 ∈ V |
| 5 | | fvexd 6203 |
. . . . 5
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 6 | | mpt2exga 7246 |
. . . . 5
⊢ ((𝐵 ∈ V ∧
(Base‘𝑅) ∈ V)
→ (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) ∈ V) |
| 7 | 4, 5, 6 | sylancr 695 |
. . . 4
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) ∈ V) |
| 8 | | oveq12 6659 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅)) |
| 9 | 8 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅))) |
| 10 | | marrepfval.a |
. . . . . . . . 9
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 11 | 10 | fveq2i 6194 |
. . . . . . . 8
⊢
(Base‘𝐴) =
(Base‘(𝑁 Mat 𝑅)) |
| 12 | 2, 11 | eqtri 2644 |
. . . . . . 7
⊢ 𝐵 = (Base‘(𝑁 Mat 𝑅)) |
| 13 | 9, 12 | syl6eqr 2674 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵) |
| 14 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 15 | 14 | adantl 482 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘𝑟) = (Base‘𝑅)) |
| 16 | | simpl 473 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) |
| 17 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
| 18 | | marrepfval.z |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑅) |
| 19 | 17, 18 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 20 | 19 | ifeq2d 4105 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)) = if(𝑗 = 𝑙, 𝑠, 0 )) |
| 21 | 20 | ifeq1d 4104 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))) |
| 22 | 21 | adantl 482 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))) |
| 23 | 16, 16, 22 | mpt2eq123dv 6717 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)), (𝑖𝑚𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))) |
| 24 | 16, 16, 23 | mpt2eq123dv 6717 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)), (𝑖𝑚𝑗)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) |
| 25 | 13, 15, 24 | mpt2eq123dv 6717 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)), (𝑖𝑚𝑗))))) = (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))) |
| 26 | | df-marrep 20364 |
. . . . 5
⊢ matRRep
= (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)), (𝑖𝑚𝑗)))))) |
| 27 | 25, 26 | ovmpt2ga 6790 |
. . . 4
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V ∧ (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) ∈ V) → (𝑁 matRRep 𝑅) = (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))) |
| 28 | 7, 27 | mpd3an3 1425 |
. . 3
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))) |
| 29 | 26 | mpt2ndm0 6875 |
. . . . 5
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = ∅) |
| 30 | | mpt20 6725 |
. . . . 5
⊢ (𝑚 ∈ ∅, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) = ∅ |
| 31 | 29, 30 | syl6eqr 2674 |
. . . 4
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = (𝑚 ∈ ∅, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))) |
| 32 | | matbas0pc 20215 |
. . . . . 6
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) →
(Base‘(𝑁 Mat 𝑅)) = ∅) |
| 33 | 12, 32 | syl5eq 2668 |
. . . . 5
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
| 34 | | eqidd 2623 |
. . . . 5
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) →
(Base‘𝑅) =
(Base‘𝑅)) |
| 35 | | mpt2eq12 6715 |
. . . . 5
⊢ ((𝐵 = ∅ ∧
(Base‘𝑅) =
(Base‘𝑅)) →
(𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))) |
| 36 | 33, 34, 35 | syl2anc 693 |
. . . 4
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))) |
| 37 | 31, 36 | eqtr4d 2659 |
. . 3
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))) |
| 38 | 28, 37 | pm2.61i 176 |
. 2
⊢ (𝑁 matRRep 𝑅) = (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) |
| 39 | 1, 38 | eqtri 2644 |
1
⊢ 𝑄 = (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) |