MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepval0 Structured version   Visualization version   GIF version

Theorem marrepval0 20367
Description: Second substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.)
Hypotheses
Ref Expression
marrepfval.a 𝐴 = (𝑁 Mat 𝑅)
marrepfval.b 𝐵 = (Base‘𝐴)
marrepfval.q 𝑄 = (𝑁 matRRep 𝑅)
marrepfval.z 0 = (0g𝑅)
Assertion
Ref Expression
marrepval0 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘,𝑙   𝑅,𝑖,𝑗,𝑘,𝑙   𝑖,𝑀,𝑗,𝑘,𝑙   𝑆,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑙)   0 (𝑖,𝑗,𝑘,𝑙)

Proof of Theorem marrepval0
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 marrepfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 20218 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 475 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
54, 4jca 554 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
65adantr 481 . . 3 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
7 mpt2exga 7246 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V)
86, 7syl 17 . 2 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V)
9 ifeq1 4090 . . . . . . 7 (𝑠 = 𝑆 → if(𝑗 = 𝑙, 𝑠, 0 ) = if(𝑗 = 𝑙, 𝑆, 0 ))
109adantl 482 . . . . . 6 ((𝑚 = 𝑀𝑠 = 𝑆) → if(𝑗 = 𝑙, 𝑠, 0 ) = if(𝑗 = 𝑙, 𝑆, 0 ))
11 oveq 6656 . . . . . . 7 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
1211adantr 481 . . . . . 6 ((𝑚 = 𝑀𝑠 = 𝑆) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
1310, 12ifeq12d 4106 . . . . 5 ((𝑚 = 𝑀𝑠 = 𝑆) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))
1413mpt2eq3dv 6721 . . . 4 ((𝑚 = 𝑀𝑠 = 𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))
1514mpt2eq3dv 6721 . . 3 ((𝑚 = 𝑀𝑠 = 𝑆) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
16 marrepfval.q . . . 4 𝑄 = (𝑁 matRRep 𝑅)
17 marrepfval.z . . . 4 0 = (0g𝑅)
181, 2, 16, 17marrepfval 20366 . . 3 𝑄 = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
1915, 18ovmpt2ga 6790 . 2 ((𝑀𝐵𝑆 ∈ (Base‘𝑅) ∧ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
208, 19mpd3an3 1425 1 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  ifcif 4086  cfv 5888  (class class class)co 6650  cmpt2 6652  Fincfn 7955  Basecbs 15857  0gc0g 16100   Mat cmat 20213   matRRep cmarrep 20362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-slot 15861  df-base 15863  df-mat 20214  df-marrep 20364
This theorem is referenced by:  marrepval  20368  minmar1marrep  20456
  Copyright terms: Public domain W3C validator