MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepfval Structured version   Visualization version   Unicode version

Theorem marrepfval 20366
Description: First substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.)
Hypotheses
Ref Expression
marrepfval.a  |-  A  =  ( N Mat  R )
marrepfval.b  |-  B  =  ( Base `  A
)
marrepfval.q  |-  Q  =  ( N matRRep  R )
marrepfval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
marrepfval  |-  Q  =  ( m  e.  B ,  s  e.  ( Base `  R )  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )
Distinct variable groups:    B, m, s    i, N, j, k, l, m, s    R, i, j, k, l, m, s
Allowed substitution hints:    A( i, j, k, m, s, l)    B( i, j, k, l)    Q( i, j, k, m, s, l)    .0. ( i,
j, k, m, s, l)

Proof of Theorem marrepfval
Dummy variables  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.q . 2  |-  Q  =  ( N matRRep  R )
2 marrepfval.b . . . . . 6  |-  B  =  ( Base `  A
)
3 fvex 6201 . . . . . 6  |-  ( Base `  A )  e.  _V
42, 3eqeltri 2697 . . . . 5  |-  B  e. 
_V
5 fvexd 6203 . . . . 5  |-  ( ( N  e.  _V  /\  R  e.  _V )  ->  ( Base `  R
)  e.  _V )
6 mpt2exga 7246 . . . . 5  |-  ( ( B  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
m  e.  B , 
s  e.  ( Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  e.  _V )
74, 5, 6sylancr 695 . . . 4  |-  ( ( N  e.  _V  /\  R  e.  _V )  ->  ( m  e.  B ,  s  e.  ( Base `  R )  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  e.  _V )
8 oveq12 6659 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  ( N Mat  R
) )
98fveq2d 6195 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  ( Base `  ( N Mat  R ) ) )
10 marrepfval.a . . . . . . . . 9  |-  A  =  ( N Mat  R )
1110fveq2i 6194 . . . . . . . 8  |-  ( Base `  A )  =  (
Base `  ( N Mat  R ) )
122, 11eqtri 2644 . . . . . . 7  |-  B  =  ( Base `  ( N Mat  R ) )
139, 12syl6eqr 2674 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  B )
14 fveq2 6191 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
1514adantl 482 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  r
)  =  ( Base `  R ) )
16 simpl 473 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  n  =  N )
17 fveq2 6191 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
18 marrepfval.z . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  R )
1917, 18syl6eqr 2674 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
2019ifeq2d 4105 . . . . . . . . . 10  |-  ( r  =  R  ->  if ( j  =  l ,  s ,  ( 0g `  r ) )  =  if ( j  =  l ,  s ,  .0.  )
)
2120ifeq1d 4104 . . . . . . . . 9  |-  ( r  =  R  ->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g `  r ) ) ,  ( i m j ) )  =  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) )
2221adantl 482 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g
`  r ) ) ,  ( i m j ) )  =  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) )
2316, 16, 22mpt2eq123dv 6717 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g
`  r ) ) ,  ( i m j ) ) )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) )
2416, 16, 23mpt2eq123dv 6717 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g
`  r ) ) ,  ( i m j ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )
2513, 15, 24mpt2eq123dv 6717 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( m  e.  (
Base `  ( n Mat  r ) ) ,  s  e.  ( Base `  r )  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g `  r
) ) ,  ( i m j ) ) ) ) )  =  ( m  e.  B ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
26 df-marrep 20364 . . . . 5  |- matRRep  =  ( n  e.  _V , 
r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  r ) ) ,  s  e.  ( Base `  r
)  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g `  r ) ) ,  ( i m j ) ) ) ) ) )
2725, 26ovmpt2ga 6790 . . . 4  |-  ( ( N  e.  _V  /\  R  e.  _V  /\  (
m  e.  B , 
s  e.  ( Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  e.  _V )  -> 
( N matRRep  R )  =  ( m  e.  B ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
287, 27mpd3an3 1425 . . 3  |-  ( ( N  e.  _V  /\  R  e.  _V )  ->  ( N matRRep  R )  =  ( m  e.  B ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
2926mpt2ndm0 6875 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N matRRep  R )  =  (/) )
30 mpt20 6725 . . . . 5  |-  ( m  e.  (/) ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) )  =  (/)
3129, 30syl6eqr 2674 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N matRRep  R )  =  ( m  e.  (/) ,  s  e.  (
Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) ) )
32 matbas0pc 20215 . . . . . 6  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( Base `  ( N Mat  R ) )  =  (/) )
3312, 32syl5eq 2668 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  B  =  (/) )
34 eqidd 2623 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( Base `  R
)  =  ( Base `  R ) )
35 mpt2eq12 6715 . . . . 5  |-  ( ( B  =  (/)  /\  ( Base `  R )  =  ( Base `  R
) )  ->  (
m  e.  B , 
s  e.  ( Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  =  ( m  e.  (/) ,  s  e.  (
Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) ) )
3633, 34, 35syl2anc 693 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( m  e.  B ,  s  e.  ( Base `  R )  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  =  ( m  e.  (/) ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
3731, 36eqtr4d 2659 . . 3  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N matRRep  R )  =  ( m  e.  B ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
3828, 37pm2.61i 176 . 2  |-  ( N matRRep  R )  =  ( m  e.  B , 
s  e.  ( Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )
391, 38eqtri 2644 1  |-  Q  =  ( m  e.  B ,  s  e.  ( Base `  R )  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ifcif 4086   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   0gc0g 16100   Mat cmat 20213   matRRep cmarrep 20362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-slot 15861  df-base 15863  df-mat 20214  df-marrep 20364
This theorem is referenced by:  marrepval0  20367
  Copyright terms: Public domain W3C validator