| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmco | Structured version Visualization version GIF version | ||
| Description: The composition of two measurable functions is measurable. ( cf. cnmpt11 21466) (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| mbfmco.1 | ⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) |
| mbfmco.2 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| mbfmco.3 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
| mbfmco.4 | ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) |
| mbfmco.5 | ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) |
| Ref | Expression |
|---|---|
| mbfmco | ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmco.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 2 | mbfmco.3 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
| 3 | mbfmco.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) | |
| 4 | 1, 2, 3 | mbfmf 30317 | . . . 4 ⊢ (𝜑 → 𝐺:∪ 𝑆⟶∪ 𝑇) |
| 5 | mbfmco.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) | |
| 6 | mbfmco.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) | |
| 7 | 5, 1, 6 | mbfmf 30317 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝑅⟶∪ 𝑆) |
| 8 | fco 6058 | . . . 4 ⊢ ((𝐺:∪ 𝑆⟶∪ 𝑇 ∧ 𝐹:∪ 𝑅⟶∪ 𝑆) → (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇) | |
| 9 | 4, 7, 8 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇) |
| 10 | unielsiga 30191 | . . . . 5 ⊢ (𝑇 ∈ ∪ ran sigAlgebra → ∪ 𝑇 ∈ 𝑇) | |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑇) |
| 12 | unielsiga 30191 | . . . . 5 ⊢ (𝑅 ∈ ∪ ran sigAlgebra → ∪ 𝑅 ∈ 𝑅) | |
| 13 | 5, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ 𝑅 ∈ 𝑅) |
| 14 | 11, 13 | elmapd 7871 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑅) ↔ (𝐺 ∘ 𝐹):∪ 𝑅⟶∪ 𝑇)) |
| 15 | 9, 14 | mpbird 247 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑅)) |
| 16 | cnvco 5308 | . . . . . 6 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
| 17 | 16 | imaeq1i 5463 | . . . . 5 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑎) = ((◡𝐹 ∘ ◡𝐺) “ 𝑎) |
| 18 | imaco 5640 | . . . . 5 ⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑎) = (◡𝐹 “ (◡𝐺 “ 𝑎)) | |
| 19 | 17, 18 | eqtri 2644 | . . . 4 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑎) = (◡𝐹 “ (◡𝐺 “ 𝑎)) |
| 20 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑅 ∈ ∪ ran sigAlgebra) |
| 21 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 22 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆)) |
| 23 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑇 ∈ ∪ ran sigAlgebra) |
| 24 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝐺 ∈ (𝑆MblFnM𝑇)) |
| 25 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑎 ∈ 𝑇) | |
| 26 | 21, 23, 24, 25 | mbfmcnvima 30319 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡𝐺 “ 𝑎) ∈ 𝑆) |
| 27 | 20, 21, 22, 26 | mbfmcnvima 30319 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡𝐹 “ (◡𝐺 “ 𝑎)) ∈ 𝑅) |
| 28 | 19, 27 | syl5eqel 2705 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅) |
| 29 | 28 | ralrimiva 2966 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑇 (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅) |
| 30 | 5, 2 | ismbfm 30314 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇) ↔ ((𝐺 ∘ 𝐹) ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑅) ∧ ∀𝑎 ∈ 𝑇 (◡(𝐺 ∘ 𝐹) “ 𝑎) ∈ 𝑅))) |
| 31 | 15, 29, 30 | mpbir2and 957 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ∪ cuni 4436 ◡ccnv 5113 ran crn 5115 “ cima 5117 ∘ ccom 5118 ⟶wf 5884 (class class class)co 6650 ↑𝑚 cmap 7857 sigAlgebracsiga 30170 MblFnMcmbfm 30312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-siga 30171 df-mbfm 30313 |
| This theorem is referenced by: rrvadd 30514 rrvmulc 30515 |
| Copyright terms: Public domain | W3C validator |