Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbfm Structured version   Visualization version   GIF version

Theorem ismbfm 30314
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 23397. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Hypotheses
Ref Expression
ismbfm.1 (𝜑𝑆 ran sigAlgebra)
ismbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
ismbfm (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇𝑚 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ismbfm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbfm.1 . . . 4 (𝜑𝑆 ran sigAlgebra)
2 ismbfm.2 . . . 4 (𝜑𝑇 ran sigAlgebra)
3 unieq 4444 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
43oveq2d 6666 . . . . . 6 (𝑠 = 𝑆 → ( 𝑡𝑚 𝑠) = ( 𝑡𝑚 𝑆))
5 eleq2 2690 . . . . . . 7 (𝑠 = 𝑆 → ((𝑓𝑥) ∈ 𝑠 ↔ (𝑓𝑥) ∈ 𝑆))
65ralbidv 2986 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠 ↔ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆))
74, 6rabeqbidv 3195 . . . . 5 (𝑠 = 𝑆 → {𝑓 ∈ ( 𝑡𝑚 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠} = {𝑓 ∈ ( 𝑡𝑚 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆})
8 unieq 4444 . . . . . . 7 (𝑡 = 𝑇 𝑡 = 𝑇)
98oveq1d 6665 . . . . . 6 (𝑡 = 𝑇 → ( 𝑡𝑚 𝑆) = ( 𝑇𝑚 𝑆))
10 raleq 3138 . . . . . 6 (𝑡 = 𝑇 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆))
119, 10rabeqbidv 3195 . . . . 5 (𝑡 = 𝑇 → {𝑓 ∈ ( 𝑡𝑚 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆} = {𝑓 ∈ ( 𝑇𝑚 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
12 df-mbfm 30313 . . . . 5 MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡𝑚 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
13 ovex 6678 . . . . . 6 ( 𝑇𝑚 𝑆) ∈ V
1413rabex 4813 . . . . 5 {𝑓 ∈ ( 𝑇𝑚 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ∈ V
157, 11, 12, 14ovmpt2 6796 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇𝑚 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
161, 2, 15syl2anc 693 . . 3 (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇𝑚 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
1716eleq2d 2687 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ ( 𝑇𝑚 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆}))
18 cnveq 5296 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
1918imaeq1d 5465 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
2019eleq1d 2686 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑥) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
2120ralbidv 2986 . . 3 (𝑓 = 𝐹 → (∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2221elrab 3363 . 2 (𝐹 ∈ {𝑓 ∈ ( 𝑇𝑚 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ↔ (𝐹 ∈ ( 𝑇𝑚 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2317, 22syl6bb 276 1 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇𝑚 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916   cuni 4436  ccnv 5113  ran crn 5115  cima 5117  (class class class)co 6650  𝑚 cmap 7857  sigAlgebracsiga 30170  MblFnMcmbfm 30312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mbfm 30313
This theorem is referenced by:  elunirnmbfm  30315  mbfmf  30317  isanmbfm  30318  mbfmcnvima  30319  mbfmcst  30321  1stmbfm  30322  2ndmbfm  30323  imambfm  30324  mbfmco  30326  elmbfmvol2  30329  mbfmcnt  30330  sibfof  30402  isrrvv  30505
  Copyright terms: Public domain W3C validator