Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmco Structured version   Visualization version   Unicode version

Theorem mbfmco 30326
Description: The composition of two measurable functions is measurable. ( cf. cnmpt11 21466) (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
mbfmco.1  |-  ( ph  ->  R  e.  U. ran sigAlgebra )
mbfmco.2  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
mbfmco.3  |-  ( ph  ->  T  e.  U. ran sigAlgebra )
mbfmco.4  |-  ( ph  ->  F  e.  ( RMblFnM
S ) )
mbfmco.5  |-  ( ph  ->  G  e.  ( SMblFnM
T ) )
Assertion
Ref Expression
mbfmco  |-  ( ph  ->  ( G  o.  F
)  e.  ( RMblFnM
T ) )

Proof of Theorem mbfmco
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 mbfmco.2 . . . . 5  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
2 mbfmco.3 . . . . 5  |-  ( ph  ->  T  e.  U. ran sigAlgebra )
3 mbfmco.5 . . . . 5  |-  ( ph  ->  G  e.  ( SMblFnM
T ) )
41, 2, 3mbfmf 30317 . . . 4  |-  ( ph  ->  G : U. S --> U. T )
5 mbfmco.1 . . . . 5  |-  ( ph  ->  R  e.  U. ran sigAlgebra )
6 mbfmco.4 . . . . 5  |-  ( ph  ->  F  e.  ( RMblFnM
S ) )
75, 1, 6mbfmf 30317 . . . 4  |-  ( ph  ->  F : U. R --> U. S )
8 fco 6058 . . . 4  |-  ( ( G : U. S --> U. T  /\  F : U. R --> U. S )  -> 
( G  o.  F
) : U. R --> U. T )
94, 7, 8syl2anc 693 . . 3  |-  ( ph  ->  ( G  o.  F
) : U. R --> U. T )
10 unielsiga 30191 . . . . 5  |-  ( T  e.  U. ran sigAlgebra  ->  U. T  e.  T )
112, 10syl 17 . . . 4  |-  ( ph  ->  U. T  e.  T
)
12 unielsiga 30191 . . . . 5  |-  ( R  e.  U. ran sigAlgebra  ->  U. R  e.  R )
135, 12syl 17 . . . 4  |-  ( ph  ->  U. R  e.  R
)
1411, 13elmapd 7871 . . 3  |-  ( ph  ->  ( ( G  o.  F )  e.  ( U. T  ^m  U. R )  <->  ( G  o.  F ) : U. R
--> U. T ) )
159, 14mpbird 247 . 2  |-  ( ph  ->  ( G  o.  F
)  e.  ( U. T  ^m  U. R ) )
16 cnvco 5308 . . . . . 6  |-  `' ( G  o.  F )  =  ( `' F  o.  `' G )
1716imaeq1i 5463 . . . . 5  |-  ( `' ( G  o.  F
) " a )  =  ( ( `' F  o.  `' G
) " a )
18 imaco 5640 . . . . 5  |-  ( ( `' F  o.  `' G ) " a
)  =  ( `' F " ( `' G " a ) )
1917, 18eqtri 2644 . . . 4  |-  ( `' ( G  o.  F
) " a )  =  ( `' F " ( `' G "
a ) )
205adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  R  e.  U. ran sigAlgebra )
211adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  S  e.  U. ran sigAlgebra )
226adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  F  e.  ( RMblFnM S ) )
232adantr 481 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  T  e.  U. ran sigAlgebra )
243adantr 481 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  G  e.  ( SMblFnM T ) )
25 simpr 477 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  a  e.  T )
2621, 23, 24, 25mbfmcnvima 30319 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  ( `' G " a )  e.  S )
2720, 21, 22, 26mbfmcnvima 30319 . . . 4  |-  ( (
ph  /\  a  e.  T )  ->  ( `' F " ( `' G " a ) )  e.  R )
2819, 27syl5eqel 2705 . . 3  |-  ( (
ph  /\  a  e.  T )  ->  ( `' ( G  o.  F ) " a
)  e.  R )
2928ralrimiva 2966 . 2  |-  ( ph  ->  A. a  e.  T  ( `' ( G  o.  F ) " a
)  e.  R )
305, 2ismbfm 30314 . 2  |-  ( ph  ->  ( ( G  o.  F )  e.  ( RMblFnM T )  <->  ( ( G  o.  F )  e.  ( U. T  ^m  U. R )  /\  A. a  e.  T  ( `' ( G  o.  F ) " a
)  e.  R ) ) )
3115, 29, 30mpbir2and 957 1  |-  ( ph  ->  ( G  o.  F
)  e.  ( RMblFnM
T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   U.cuni 4436   `'ccnv 5113   ran crn 5115   "cima 5117    o. ccom 5118   -->wf 5884  (class class class)co 6650    ^m cmap 7857  sigAlgebracsiga 30170  MblFnMcmbfm 30312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-siga 30171  df-mbfm 30313
This theorem is referenced by:  rrvadd  30514  rrvmulc  30515
  Copyright terms: Public domain W3C validator