| Step | Hyp | Ref
| Expression |
| 1 | | elex 3212 |
. 2
⊢ (𝑀 ∈ 𝑋 → 𝑀 ∈ V) |
| 2 | | oveq12 6659 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑚 = 𝑀) → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀)) |
| 3 | 2 | anidms 677 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀)) |
| 4 | | mendval.b |
. . . . . 6
⊢ 𝐵 = (𝑀 LMHom 𝑀) |
| 5 | 3, 4 | syl6eqr 2674 |
. . . . 5
⊢ (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = 𝐵) |
| 6 | 5 | csbeq1d 3540 |
. . . 4
⊢ (𝑚 = 𝑀 → ⦋(𝑚 LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦))〉}) = ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦))〉})) |
| 7 | | ovex 6678 |
. . . . . 6
⊢ (𝑚 LMHom 𝑚) ∈ V |
| 8 | 5, 7 | syl6eqelr 2710 |
. . . . 5
⊢ (𝑚 = 𝑀 → 𝐵 ∈ V) |
| 9 | | simpr 477 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
| 10 | 9 | opeq2d 4409 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → 〈(Base‘ndx), 𝑏〉 = 〈(Base‘ndx),
𝐵〉) |
| 11 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) |
| 12 | | ofeq 6899 |
. . . . . . . . . . . 12
⊢
((+g‘𝑚) = (+g‘𝑀) → ∘𝑓
(+g‘𝑚) =
∘𝑓 (+g‘𝑀)) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → ∘𝑓
(+g‘𝑚) =
∘𝑓 (+g‘𝑀)) |
| 14 | 13 | oveqdr 6674 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (𝑥 ∘𝑓
(+g‘𝑚)𝑦) = (𝑥 ∘𝑓
(+g‘𝑀)𝑦)) |
| 15 | 9, 9, 14 | mpt2eq123dv 6717 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦))) |
| 16 | | mendval.p |
. . . . . . . . 9
⊢ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦)) |
| 17 | 15, 16 | syl6eqr 2674 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦)) = + ) |
| 18 | 17 | opeq2d 4409 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → 〈(+g‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦))〉 = 〈(+g‘ndx),
+
〉) |
| 19 | | eqidd 2623 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (𝑥 ∘ 𝑦) = (𝑥 ∘ 𝑦)) |
| 20 | 9, 9, 19 | mpt2eq123dv 6717 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦))) |
| 21 | | mendval.t |
. . . . . . . . 9
⊢ × =
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) |
| 22 | 20, 21 | syl6eqr 2674 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦)) = × ) |
| 23 | 22 | opeq2d 4409 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉 = 〈(.r‘ndx),
×
〉) |
| 24 | 10, 18, 23 | tpeq123d 4283 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → {〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ×
〉}) |
| 25 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (Scalar‘𝑚) = (Scalar‘𝑀)) |
| 26 | 25 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (Scalar‘𝑚) = (Scalar‘𝑀)) |
| 27 | | mendval.s |
. . . . . . . . 9
⊢ 𝑆 = (Scalar‘𝑀) |
| 28 | 26, 27 | syl6eqr 2674 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (Scalar‘𝑚) = 𝑆) |
| 29 | 28 | opeq2d 4409 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → 〈(Scalar‘ndx),
(Scalar‘𝑚)〉 =
〈(Scalar‘ndx), 𝑆〉) |
| 30 | 28 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (Base‘(Scalar‘𝑚)) = (Base‘𝑆)) |
| 31 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑀 → (
·𝑠 ‘𝑚) = ( ·𝑠
‘𝑀)) |
| 32 | 31 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (
·𝑠 ‘𝑚) = ( ·𝑠
‘𝑀)) |
| 33 | | ofeq 6899 |
. . . . . . . . . . . 12
⊢ ((
·𝑠 ‘𝑚) = ( ·𝑠
‘𝑀) →
∘𝑓 ( ·𝑠 ‘𝑚) = ∘𝑓
( ·𝑠 ‘𝑀)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → ∘𝑓 (
·𝑠 ‘𝑚) = ∘𝑓 (
·𝑠 ‘𝑀)) |
| 35 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) |
| 36 | 35 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (Base‘𝑚) = (Base‘𝑀)) |
| 37 | 36 | xpeq1d 5138 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → ((Base‘𝑚) × {𝑥}) = ((Base‘𝑀) × {𝑥})) |
| 38 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → 𝑦 = 𝑦) |
| 39 | 34, 37, 38 | oveq123d 6671 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑀)𝑦)) |
| 40 | 30, 9, 39 | mpt2eq123dv 6717 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ 𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑀)𝑦))) |
| 41 | | mendval.v |
. . . . . . . . 9
⊢ · =
(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ 𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑀)𝑦)) |
| 42 | 40, 41 | syl6eqr 2674 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦)) = · ) |
| 43 | 42 | opeq2d 4409 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦))〉 = 〈(
·𝑠 ‘ndx), ·
〉) |
| 44 | 29, 43 | preq12d 4276 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦))〉} = {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), ·
〉}) |
| 45 | 24, 44 | uneq12d 3768 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → ({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), ·
〉})) |
| 46 | 8, 45 | csbied 3560 |
. . . 4
⊢ (𝑚 = 𝑀 → ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), ·
〉})) |
| 47 | 6, 46 | eqtrd 2656 |
. . 3
⊢ (𝑚 = 𝑀 → ⦋(𝑚 LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), ·
〉})) |
| 48 | | df-mend 37746 |
. . 3
⊢ MEndo =
(𝑚 ∈ V ↦
⦋(𝑚 LMHom
𝑚) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘𝑓
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑚)𝑦))〉})) |
| 49 | | tpex 6957 |
. . . 4
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∈
V |
| 50 | | prex 4909 |
. . . 4
⊢
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉} ∈
V |
| 51 | 49, 50 | unex 6956 |
. . 3
⊢
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉}) ∈
V |
| 52 | 47, 48, 51 | fvmpt 6282 |
. 2
⊢ (𝑀 ∈ V →
(MEndo‘𝑀) =
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), ·
〉})) |
| 53 | 1, 52 | syl 17 |
1
⊢ (𝑀 ∈ 𝑋 → (MEndo‘𝑀) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), ·
〉})) |