Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendval Structured version   Visualization version   Unicode version

Theorem mendval 37753
Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendval.b  |-  B  =  ( M LMHom  M )
mendval.p  |-  .+  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF ( +g  `  M
) y ) )
mendval.t  |-  .X.  =  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) )
mendval.s  |-  S  =  (Scalar `  M )
mendval.v  |-  .x.  =  ( x  e.  ( Base `  S ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
Assertion
Ref Expression
mendval  |-  ( M  e.  X  ->  (MEndo `  M )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
Distinct variable groups:    x, y, B    x, M, y
Allowed substitution hints:    .+ ( x, y)    S( x, y)    .x. ( x, y)    .X. ( x, y)    X( x, y)

Proof of Theorem mendval
Dummy variables  m  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( M  e.  X  ->  M  e.  _V )
2 oveq12 6659 . . . . . . 7  |-  ( ( m  =  M  /\  m  =  M )  ->  ( m LMHom  m )  =  ( M LMHom  M
) )
32anidms 677 . . . . . 6  |-  ( m  =  M  ->  (
m LMHom  m )  =  ( M LMHom  M ) )
4 mendval.b . . . . . 6  |-  B  =  ( M LMHom  M )
53, 4syl6eqr 2674 . . . . 5  |-  ( m  =  M  ->  (
m LMHom  m )  =  B )
65csbeq1d 3540 . . . 4  |-  ( m  =  M  ->  [_ (
m LMHom  m )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } )  =  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } ) )
7 ovex 6678 . . . . . 6  |-  ( m LMHom 
m )  e.  _V
85, 7syl6eqelr 2710 . . . . 5  |-  ( m  =  M  ->  B  e.  _V )
9 simpr 477 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  b  =  B )
109opeq2d 4409 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. ( Base `  ndx ) ,  b >.  = 
<. ( Base `  ndx ) ,  B >. )
11 fveq2 6191 . . . . . . . . . . . 12  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
12 ofeq 6899 . . . . . . . . . . . 12  |-  ( ( +g  `  m )  =  ( +g  `  M
)  ->  oF
( +g  `  m )  =  oF ( +g  `  M ) )
1311, 12syl 17 . . . . . . . . . . 11  |-  ( m  =  M  ->  oF ( +g  `  m
)  =  oF ( +g  `  M
) )
1413oveqdr 6674 . . . . . . . . . 10  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  oF ( +g  `  m
) y )  =  ( x  oF ( +g  `  M
) y ) )
159, 9, 14mpt2eq123dv 6717 . . . . . . . . 9  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF ( +g  `  M
) y ) ) )
16 mendval.p . . . . . . . . 9  |-  .+  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF ( +g  `  M
) y ) )
1715, 16syl6eqr 2674 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )  =  .+  )
1817opeq2d 4409 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>.  =  <. ( +g  ` 
ndx ) ,  .+  >.
)
19 eqidd 2623 . . . . . . . . . 10  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  o.  y
)  =  ( x  o.  y ) )
209, 9, 19mpt2eq123dv 6717 . . . . . . . . 9  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  b ,  y  e.  b 
|->  ( x  o.  y
) )  =  ( x  e.  B , 
y  e.  B  |->  ( x  o.  y ) ) )
21 mendval.t . . . . . . . . 9  |-  .X.  =  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) )
2220, 21syl6eqr 2674 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  b ,  y  e.  b 
|->  ( x  o.  y
) )  =  .X.  )
2322opeq2d 4409 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. ( .r `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >.  =  <. ( .r `  ndx ) ,  .X.  >. )
2410, 18, 23tpeq123d 4283 . . . . . 6  |-  ( ( m  =  M  /\  b  =  B )  ->  { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. } )
25 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  M  ->  (Scalar `  m )  =  (Scalar `  M ) )
2625adantr 481 . . . . . . . . 9  |-  ( ( m  =  M  /\  b  =  B )  ->  (Scalar `  m )  =  (Scalar `  M )
)
27 mendval.s . . . . . . . . 9  |-  S  =  (Scalar `  M )
2826, 27syl6eqr 2674 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  (Scalar `  m )  =  S )
2928opeq2d 4409 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. (Scalar `  ndx ) ,  (Scalar `  m ) >.  =  <. (Scalar `  ndx ) ,  S >. )
3028fveq2d 6195 . . . . . . . . . 10  |-  ( ( m  =  M  /\  b  =  B )  ->  ( Base `  (Scalar `  m ) )  =  ( Base `  S
) )
31 fveq2 6191 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  ( .s `  m )  =  ( .s `  M
) )
3231adantr 481 . . . . . . . . . . . 12  |-  ( ( m  =  M  /\  b  =  B )  ->  ( .s `  m
)  =  ( .s
`  M ) )
33 ofeq 6899 . . . . . . . . . . . 12  |-  ( ( .s `  m )  =  ( .s `  M )  ->  oF ( .s `  m )  =  oF ( .s `  M ) )
3432, 33syl 17 . . . . . . . . . . 11  |-  ( ( m  =  M  /\  b  =  B )  ->  oF ( .s
`  m )  =  oF ( .s
`  M ) )
35 fveq2 6191 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
3635adantr 481 . . . . . . . . . . . 12  |-  ( ( m  =  M  /\  b  =  B )  ->  ( Base `  m
)  =  ( Base `  M ) )
3736xpeq1d 5138 . . . . . . . . . . 11  |-  ( ( m  =  M  /\  b  =  B )  ->  ( ( Base `  m
)  X.  { x } )  =  ( ( Base `  M
)  X.  { x } ) )
38 eqidd 2623 . . . . . . . . . . 11  |-  ( ( m  =  M  /\  b  =  B )  ->  y  =  y )
3934, 37, 38oveq123d 6671 . . . . . . . . . 10  |-  ( ( m  =  M  /\  b  =  B )  ->  ( ( ( Base `  m )  X.  {
x } )  oF ( .s `  m ) y )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) y ) )
4030, 9, 39mpt2eq123dv 6717 . . . . . . . . 9  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  (
Base `  (Scalar `  m
) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )  =  ( x  e.  ( Base `  S
) ,  y  e.  B  |->  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) y ) ) )
41 mendval.v . . . . . . . . 9  |-  .x.  =  ( x  e.  ( Base `  S ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
4240, 41syl6eqr 2674 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  (
Base `  (Scalar `  m
) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )  =  .x.  )
4342opeq2d 4409 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>.  =  <. ( .s
`  ndx ) ,  .x.  >.
)
4429, 43preq12d 4276 . . . . . 6  |-  ( ( m  =  M  /\  b  =  B )  ->  { <. (Scalar `  ndx ) ,  (Scalar `  m
) >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  (Scalar `  m
) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. }  =  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. } )
4524, 44uneq12d 3768 . . . . 5  |-  ( ( m  =  M  /\  b  =  B )  ->  ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
468, 45csbied 3560 . . . 4  |-  ( m  =  M  ->  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
476, 46eqtrd 2656 . . 3  |-  ( m  =  M  ->  [_ (
m LMHom  m )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
48 df-mend 37746 . . 3  |- MEndo  =  ( m  e.  _V  |->  [_ ( m LMHom  m )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } ) )
49 tpex 6957 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  e.  _V
50 prex 4909 . . . 4  |-  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. }  e.  _V
5149, 50unex 6956 . . 3  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } )  e. 
_V
5247, 48, 51fvmpt 6282 . 2  |-  ( M  e.  _V  ->  (MEndo `  M )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
531, 52syl 17 1  |-  ( M  e.  X  ->  (MEndo `  M )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533    u. cun 3572   {csn 4177   {cpr 4179   {ctp 4181   <.cop 4183    X. cxp 5112    o. ccom 5118   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   LMHom clmhm 19019  MEndocmend 37745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-mend 37746
This theorem is referenced by:  mendbas  37754  mendplusgfval  37755  mendmulrfval  37757  mendsca  37759  mendvscafval  37760
  Copyright terms: Public domain W3C validator