Proof of Theorem mendvscafval
| Step | Hyp | Ref
| Expression |
| 1 | | mendvscafval.a |
. . 3
⊢ 𝐴 = (MEndo‘𝑀) |
| 2 | 1 | fveq2i 6194 |
. 2
⊢ (
·𝑠 ‘𝐴) = ( ·𝑠
‘(MEndo‘𝑀)) |
| 3 | | mendvscafval.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐴) |
| 4 | 1 | mendbas 37754 |
. . . . . . 7
⊢ (𝑀 LMHom 𝑀) = (Base‘𝐴) |
| 5 | 3, 4 | eqtr4i 2647 |
. . . . . 6
⊢ 𝐵 = (𝑀 LMHom 𝑀) |
| 6 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦)) |
| 7 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) |
| 8 | | mendvscafval.s |
. . . . . 6
⊢ 𝑆 = (Scalar‘𝑀) |
| 9 | | mendvscafval.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝑆) |
| 10 | | eqid 2622 |
. . . . . . 7
⊢ 𝐵 = 𝐵 |
| 11 | | mendvscafval.e |
. . . . . . . . 9
⊢ 𝐸 = (Base‘𝑀) |
| 12 | 11 | xpeq1i 5135 |
. . . . . . . 8
⊢ (𝐸 × {𝑥}) = ((Base‘𝑀) × {𝑥}) |
| 13 | | eqid 2622 |
. . . . . . . 8
⊢ 𝑦 = 𝑦 |
| 14 | | mendvscafval.v |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑀) |
| 15 | | ofeq 6899 |
. . . . . . . . 9
⊢ ( · = (
·𝑠 ‘𝑀) → ∘𝑓 · =
∘𝑓 ( ·𝑠 ‘𝑀)) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . 8
⊢
∘𝑓 · =
∘𝑓 ( ·𝑠 ‘𝑀) |
| 17 | 12, 13, 16 | oveq123i 6664 |
. . . . . . 7
⊢ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑀)𝑦) |
| 18 | 9, 10, 17 | mpt2eq123i 6718 |
. . . . . 6
⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ 𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 (
·𝑠 ‘𝑀)𝑦)) |
| 19 | 5, 6, 7, 8, 18 | mendval 37753 |
. . . . 5
⊢ (𝑀 ∈ V →
(MEndo‘𝑀) =
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))〉})) |
| 20 | 19 | fveq2d 6195 |
. . . 4
⊢ (𝑀 ∈ V → (
·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠
‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))〉}))) |
| 21 | | fvex 6201 |
. . . . . . 7
⊢
(Base‘𝑆)
∈ V |
| 22 | 9, 21 | eqeltri 2697 |
. . . . . 6
⊢ 𝐾 ∈ V |
| 23 | | fvex 6201 |
. . . . . . 7
⊢
(Base‘𝐴)
∈ V |
| 24 | 3, 23 | eqeltri 2697 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 25 | 22, 24 | mpt2ex 7247 |
. . . . 5
⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) ∈ V |
| 26 | | eqid 2622 |
. . . . . 6
⊢
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))〉}) =
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))〉}) |
| 27 | 26 | algvsca 37752 |
. . . . 5
⊢ ((𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (
·𝑠 ‘({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))〉}))) |
| 28 | 25, 27 | mp1i 13 |
. . . 4
⊢ (𝑀 ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (
·𝑠 ‘({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘𝑓
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))〉}))) |
| 29 | 20, 28 | eqtr4d 2659 |
. . 3
⊢ (𝑀 ∈ V → (
·𝑠 ‘(MEndo‘𝑀)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))) |
| 30 | | fvprc 6185 |
. . . . . 6
⊢ (¬
𝑀 ∈ V →
(MEndo‘𝑀) =
∅) |
| 31 | 30 | fveq2d 6195 |
. . . . 5
⊢ (¬
𝑀 ∈ V → (
·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠
‘∅)) |
| 32 | | df-vsca 15958 |
. . . . . 6
⊢
·𝑠 = Slot 6 |
| 33 | 32 | str0 15911 |
. . . . 5
⊢ ∅ =
( ·𝑠 ‘∅) |
| 34 | 31, 33 | syl6eqr 2674 |
. . . 4
⊢ (¬
𝑀 ∈ V → (
·𝑠 ‘(MEndo‘𝑀)) = ∅) |
| 35 | | fvprc 6185 |
. . . . . . . . 9
⊢ (¬
𝑀 ∈ V →
(Scalar‘𝑀) =
∅) |
| 36 | 8, 35 | syl5eq 2668 |
. . . . . . . 8
⊢ (¬
𝑀 ∈ V → 𝑆 = ∅) |
| 37 | 36 | fveq2d 6195 |
. . . . . . 7
⊢ (¬
𝑀 ∈ V →
(Base‘𝑆) =
(Base‘∅)) |
| 38 | | base0 15912 |
. . . . . . 7
⊢ ∅ =
(Base‘∅) |
| 39 | 37, 9, 38 | 3eqtr4g 2681 |
. . . . . 6
⊢ (¬
𝑀 ∈ V → 𝐾 = ∅) |
| 40 | | mpt2eq12 6715 |
. . . . . 6
⊢ ((𝐾 = ∅ ∧ 𝐵 = 𝐵) → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))) |
| 41 | 39, 10, 40 | sylancl 694 |
. . . . 5
⊢ (¬
𝑀 ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))) |
| 42 | | mpt20 6725 |
. . . . 5
⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ∅ |
| 43 | 41, 42 | syl6eq 2672 |
. . . 4
⊢ (¬
𝑀 ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ∅) |
| 44 | 34, 43 | eqtr4d 2659 |
. . 3
⊢ (¬
𝑀 ∈ V → (
·𝑠 ‘(MEndo‘𝑀)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))) |
| 45 | 29, 44 | pm2.61i 176 |
. 2
⊢ (
·𝑠 ‘(MEndo‘𝑀)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) |
| 46 | 2, 45 | eqtri 2644 |
1
⊢ (
·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) |