Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpluscn Structured version   Visualization version   GIF version

Theorem mndpluscn 29972
Description: A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.)
Hypotheses
Ref Expression
mndpluscn.f 𝐹 ∈ (𝐽Homeo𝐾)
mndpluscn.p + :(𝐵 × 𝐵)⟶𝐵
mndpluscn.t :(𝐶 × 𝐶)⟶𝐶
mndpluscn.j 𝐽 ∈ (TopOn‘𝐵)
mndpluscn.k 𝐾 ∈ (TopOn‘𝐶)
mndpluscn.h ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
mndpluscn.o + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Assertion
Ref Expression
mndpluscn ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Distinct variable groups:   𝑦, ,𝑥   𝑦, +   𝑦,𝐹   𝑥, +   𝑥,𝐵,𝑦   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem mndpluscn
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpluscn.t . . . 4 :(𝐶 × 𝐶)⟶𝐶
2 ffn 6045 . . . 4 ( :(𝐶 × 𝐶)⟶𝐶 Fn (𝐶 × 𝐶))
3 fnov 6768 . . . . 5 ( Fn (𝐶 × 𝐶) ↔ = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
43biimpi 206 . . . 4 ( Fn (𝐶 × 𝐶) → = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
51, 2, 4mp2b 10 . . 3 = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏))
6 mndpluscn.f . . . . . . . . 9 𝐹 ∈ (𝐽Homeo𝐾)
7 mndpluscn.j . . . . . . . . . . 11 𝐽 ∈ (TopOn‘𝐵)
87toponunii 20721 . . . . . . . . . 10 𝐵 = 𝐽
9 mndpluscn.k . . . . . . . . . . 11 𝐾 ∈ (TopOn‘𝐶)
109toponunii 20721 . . . . . . . . . 10 𝐶 = 𝐾
118, 10hmeof1o 21567 . . . . . . . . 9 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝐵1-1-onto𝐶)
126, 11ax-mp 5 . . . . . . . 8 𝐹:𝐵1-1-onto𝐶
13 f1ocnvdm 6540 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹𝑎) ∈ 𝐵)
1412, 13mpan 706 . . . . . . 7 (𝑎𝐶 → (𝐹𝑎) ∈ 𝐵)
15 f1ocnvdm 6540 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹𝑏) ∈ 𝐵)
1612, 15mpan 706 . . . . . . 7 (𝑏𝐶 → (𝐹𝑏) ∈ 𝐵)
1714, 16anim12i 590 . . . . . 6 ((𝑎𝐶𝑏𝐶) → ((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵))
18 mndpluscn.h . . . . . . 7 ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1918rgen2a 2977 . . . . . 6 𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))
20 oveq1 6657 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥 + 𝑦) = ((𝐹𝑎) + 𝑦))
2120fveq2d 6195 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘((𝐹𝑎) + 𝑦)))
22 fveq2 6191 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝐹𝑥) = (𝐹‘(𝐹𝑎)))
2322oveq1d 6665 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)))
2421, 23eqeq12d 2637 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦))))
25 oveq2 6658 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) + 𝑦) = ((𝐹𝑎) + (𝐹𝑏)))
2625fveq2d 6195 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (𝐹‘((𝐹𝑎) + 𝑦)) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
27 fveq2 6191 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (𝐹𝑦) = (𝐹‘(𝐹𝑏)))
2827oveq2d 6666 . . . . . . . 8 (𝑦 = (𝐹𝑏) → ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
2926, 28eqeq12d 2637 . . . . . . 7 (𝑦 = (𝐹𝑏) → ((𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏)))))
3024, 29rspc2va 3323 . . . . . 6 ((((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
3117, 19, 30sylancl 694 . . . . 5 ((𝑎𝐶𝑏𝐶) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
32 f1ocnvfv2 6533 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹‘(𝐹𝑎)) = 𝑎)
3312, 32mpan 706 . . . . . 6 (𝑎𝐶 → (𝐹‘(𝐹𝑎)) = 𝑎)
34 f1ocnvfv2 6533 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹‘(𝐹𝑏)) = 𝑏)
3512, 34mpan 706 . . . . . 6 (𝑏𝐶 → (𝐹‘(𝐹𝑏)) = 𝑏)
3633, 35oveqan12d 6669 . . . . 5 ((𝑎𝐶𝑏𝐶) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = (𝑎 𝑏))
3731, 36eqtr2d 2657 . . . 4 ((𝑎𝐶𝑏𝐶) → (𝑎 𝑏) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
3837mpt2eq3ia 6720 . . 3 (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)) = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
395, 38eqtri 2644 . 2 = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
409a1i 11 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘𝐶))
4140, 40cnmpt1st 21471 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑎) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
42 hmeocnvcn 21564 . . . . . . 7 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
436, 42mp1i 13 . . . . . 6 (⊤ → 𝐹 ∈ (𝐾 Cn 𝐽))
4440, 40, 41, 43cnmpt21f 21475 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑎)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
4540, 40cnmpt2nd 21472 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑏) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
4640, 40, 45, 43cnmpt21f 21475 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑏)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
47 mndpluscn.o . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4847a1i 11 . . . . 5 (⊤ → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4940, 40, 44, 46, 48cnmpt22f 21478 . . . 4 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ ((𝐹𝑎) + (𝐹𝑏))) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
50 hmeocn 21563 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
516, 50mp1i 13 . . . 4 (⊤ → 𝐹 ∈ (𝐽 Cn 𝐾))
5240, 40, 49, 51cnmpt21f 21475 . . 3 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
5352trud 1493 . 2 (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
5439, 53eqeltri 2697 1 ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wtru 1484  wcel 1990  wral 2912   × cxp 5112  ccnv 5113   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363  Homeochmeo 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-tx 21365  df-hmeo 21558
This theorem is referenced by:  mhmhmeotmd  29973  xrge0pluscn  29986
  Copyright terms: Public domain W3C validator