| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndpluscn | Structured version Visualization version Unicode version | ||
| Description: A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.) |
| Ref | Expression |
|---|---|
| mndpluscn.f |
|
| mndpluscn.p |
|
| mndpluscn.t |
|
| mndpluscn.j |
|
| mndpluscn.k |
|
| mndpluscn.h |
|
| mndpluscn.o |
|
| Ref | Expression |
|---|---|
| mndpluscn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndpluscn.t |
. . . 4
| |
| 2 | ffn 6045 |
. . . 4
| |
| 3 | fnov 6768 |
. . . . 5
| |
| 4 | 3 | biimpi 206 |
. . . 4
|
| 5 | 1, 2, 4 | mp2b 10 |
. . 3
|
| 6 | mndpluscn.f |
. . . . . . . . 9
| |
| 7 | mndpluscn.j |
. . . . . . . . . . 11
| |
| 8 | 7 | toponunii 20721 |
. . . . . . . . . 10
|
| 9 | mndpluscn.k |
. . . . . . . . . . 11
| |
| 10 | 9 | toponunii 20721 |
. . . . . . . . . 10
|
| 11 | 8, 10 | hmeof1o 21567 |
. . . . . . . . 9
|
| 12 | 6, 11 | ax-mp 5 |
. . . . . . . 8
|
| 13 | f1ocnvdm 6540 |
. . . . . . . 8
| |
| 14 | 12, 13 | mpan 706 |
. . . . . . 7
|
| 15 | f1ocnvdm 6540 |
. . . . . . . 8
| |
| 16 | 12, 15 | mpan 706 |
. . . . . . 7
|
| 17 | 14, 16 | anim12i 590 |
. . . . . 6
|
| 18 | mndpluscn.h |
. . . . . . 7
| |
| 19 | 18 | rgen2a 2977 |
. . . . . 6
|
| 20 | oveq1 6657 |
. . . . . . . . 9
| |
| 21 | 20 | fveq2d 6195 |
. . . . . . . 8
|
| 22 | fveq2 6191 |
. . . . . . . . 9
| |
| 23 | 22 | oveq1d 6665 |
. . . . . . . 8
|
| 24 | 21, 23 | eqeq12d 2637 |
. . . . . . 7
|
| 25 | oveq2 6658 |
. . . . . . . . 9
| |
| 26 | 25 | fveq2d 6195 |
. . . . . . . 8
|
| 27 | fveq2 6191 |
. . . . . . . . 9
| |
| 28 | 27 | oveq2d 6666 |
. . . . . . . 8
|
| 29 | 26, 28 | eqeq12d 2637 |
. . . . . . 7
|
| 30 | 24, 29 | rspc2va 3323 |
. . . . . 6
|
| 31 | 17, 19, 30 | sylancl 694 |
. . . . 5
|
| 32 | f1ocnvfv2 6533 |
. . . . . . 7
| |
| 33 | 12, 32 | mpan 706 |
. . . . . 6
|
| 34 | f1ocnvfv2 6533 |
. . . . . . 7
| |
| 35 | 12, 34 | mpan 706 |
. . . . . 6
|
| 36 | 33, 35 | oveqan12d 6669 |
. . . . 5
|
| 37 | 31, 36 | eqtr2d 2657 |
. . . 4
|
| 38 | 37 | mpt2eq3ia 6720 |
. . 3
|
| 39 | 5, 38 | eqtri 2644 |
. 2
|
| 40 | 9 | a1i 11 |
. . . 4
|
| 41 | 40, 40 | cnmpt1st 21471 |
. . . . . 6
|
| 42 | hmeocnvcn 21564 |
. . . . . . 7
| |
| 43 | 6, 42 | mp1i 13 |
. . . . . 6
|
| 44 | 40, 40, 41, 43 | cnmpt21f 21475 |
. . . . 5
|
| 45 | 40, 40 | cnmpt2nd 21472 |
. . . . . 6
|
| 46 | 40, 40, 45, 43 | cnmpt21f 21475 |
. . . . 5
|
| 47 | mndpluscn.o |
. . . . . 6
| |
| 48 | 47 | a1i 11 |
. . . . 5
|
| 49 | 40, 40, 44, 46, 48 | cnmpt22f 21478 |
. . . 4
|
| 50 | hmeocn 21563 |
. . . . 5
| |
| 51 | 6, 50 | mp1i 13 |
. . . 4
|
| 52 | 40, 40, 49, 51 | cnmpt21f 21475 |
. . 3
|
| 53 | 52 | trud 1493 |
. 2
|
| 54 | 39, 53 | eqeltri 2697 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 df-tx 21365 df-hmeo 21558 |
| This theorem is referenced by: mhmhmeotmd 29973 xrge0pluscn 29986 |
| Copyright terms: Public domain | W3C validator |