MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2nd Structured version   Visualization version   GIF version

Theorem cnmpt2nd 21472
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
cnmpt2nd (𝜑 → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 7189 . . . . . 6 2nd :V–onto→V
2 fofn 6117 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 ssv 3625 . . . . 5 (𝑋 × 𝑌) ⊆ V
5 fnssres 6004 . . . . 5 ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
63, 4, 5mp2an 708 . . . 4 (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
7 dffn5 6241 . . . 4 ((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)))
86, 7mpbi 220 . . 3 (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧))
9 fvres 6207 . . . 4 (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd𝑧))
109mpteq2ia 4740 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧))
11 vex 3203 . . . . 5 𝑥 ∈ V
12 vex 3203 . . . . 5 𝑦 ∈ V
1311, 12op2ndd 7179 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
1413mpt2mpt 6752 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧)) = (𝑥𝑋, 𝑦𝑌𝑦)
158, 10, 143eqtri 2648 . 2 (2nd ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝑦)
16 cnmpt21.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
17 cnmpt21.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
18 tx2cn 21413 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
1916, 17, 18syl2anc 693 . 2 (𝜑 → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
2015, 19syl5eqelr 2706 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  cmpt 4729   × cxp 5112  cres 5116   Fn wfn 5883  ontowfo 5886  cfv 5888  (class class class)co 6650  cmpt2 6652  2nd c2nd 7167  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-tx 21365
This theorem is referenced by:  cnmptcom  21481  xkofvcn  21487  cnmptk2  21489  txhmeo  21606  txswaphmeo  21608  ptunhmeo  21611  xkohmeo  21618  tgpsubcn  21894  istgp2  21895  oppgtmd  21901  prdstmdd  21927  dvrcn  21987  divcn  22671  cnrehmeo  22752  htpycom  22775  htpyco1  22777  htpycc  22779  reparphti  22797  pcohtpylem  22819  pcorevlem  22826  cxpcn  24486  vmcn  27554  dipcn  27575  mndpluscn  29972  cvxsconn  31225  cvmlift2lem6  31290
  Copyright terms: Public domain W3C validator