Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptssid Structured version   Visualization version   Unicode version

Theorem mptssid 39450
Description: The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
mptssid.1  |-  F/_ x A
mptssid.2  |-  C  =  { x  e.  A  |  B  e.  _V }
Assertion
Ref Expression
mptssid  |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  B )

Proof of Theorem mptssid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  =  B )  ->  x  e.  A )
2 eqvisset 3211 . . . . . . . . . . 11  |-  ( y  =  B  ->  B  e.  _V )
32adantl 482 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  =  B )  ->  B  e.  _V )
41, 3jca 554 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  =  B )  ->  ( x  e.  A  /\  B  e.  _V ) )
5 rabid 3116 . . . . . . . . 9  |-  ( x  e.  { x  e.  A  |  B  e. 
_V }  <->  ( x  e.  A  /\  B  e. 
_V ) )
64, 5sylibr 224 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  =  B )  ->  x  e.  { x  e.  A  |  B  e.  _V } )
7 mptssid.2 . . . . . . . 8  |-  C  =  { x  e.  A  |  B  e.  _V }
86, 7syl6eleqr 2712 . . . . . . 7  |-  ( ( x  e.  A  /\  y  =  B )  ->  x  e.  C )
9 simpr 477 . . . . . . 7  |-  ( ( x  e.  A  /\  y  =  B )  ->  y  =  B )
108, 9jca 554 . . . . . 6  |-  ( ( x  e.  A  /\  y  =  B )  ->  ( x  e.  C  /\  y  =  B
) )
11 mptssid.1 . . . . . . . . . . 11  |-  F/_ x A
1211ssrab2f 39300 . . . . . . . . . 10  |-  { x  e.  A  |  B  e.  _V }  C_  A
137, 12eqsstri 3635 . . . . . . . . 9  |-  C  C_  A
14 id 22 . . . . . . . . 9  |-  ( x  e.  C  ->  x  e.  C )
1513, 14sseldi 3601 . . . . . . . 8  |-  ( x  e.  C  ->  x  e.  A )
1615adantr 481 . . . . . . 7  |-  ( ( x  e.  C  /\  y  =  B )  ->  x  e.  A )
17 simpr 477 . . . . . . 7  |-  ( ( x  e.  C  /\  y  =  B )  ->  y  =  B )
1816, 17jca 554 . . . . . 6  |-  ( ( x  e.  C  /\  y  =  B )  ->  ( x  e.  A  /\  y  =  B
) )
1910, 18impbii 199 . . . . 5  |-  ( ( x  e.  A  /\  y  =  B )  <->  ( x  e.  C  /\  y  =  B )
)
2019ax-gen 1722 . . . 4  |-  A. y
( ( x  e.  A  /\  y  =  B )  <->  ( x  e.  C  /\  y  =  B ) )
2120ax-gen 1722 . . 3  |-  A. x A. y ( ( x  e.  A  /\  y  =  B )  <->  ( x  e.  C  /\  y  =  B ) )
22 eqopab2b 5005 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  =  B ) }  <->  A. x A. y ( ( x  e.  A  /\  y  =  B )  <->  ( x  e.  C  /\  y  =  B ) ) )
2321, 22mpbir 221 . 2  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. x ,  y >.  |  ( x  e.  C  /\  y  =  B ) }
24 df-mpt 4730 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
25 df-mpt 4730 . 2  |-  ( x  e.  C  |->  B )  =  { <. x ,  y >.  |  ( x  e.  C  /\  y  =  B ) }
2623, 24, 253eqtr4i 2654 1  |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   F/_wnfc 2751   {crab 2916   _Vcvv 3200   {copab 4712    |-> cmpt 4729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-mpt 4730
This theorem is referenced by:  limsupequzmpt2  39950  liminfequzmpt2  40023
  Copyright terms: Public domain W3C validator