| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptssid | Structured version Visualization version Unicode version | ||
| Description: The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| mptssid.1 |
|
| mptssid.2 |
|
| Ref | Expression |
|---|---|
| mptssid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . . . . . . 10
| |
| 2 | eqvisset 3211 |
. . . . . . . . . . 11
| |
| 3 | 2 | adantl 482 |
. . . . . . . . . 10
|
| 4 | 1, 3 | jca 554 |
. . . . . . . . 9
|
| 5 | rabid 3116 |
. . . . . . . . 9
| |
| 6 | 4, 5 | sylibr 224 |
. . . . . . . 8
|
| 7 | mptssid.2 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl6eleqr 2712 |
. . . . . . 7
|
| 9 | simpr 477 |
. . . . . . 7
| |
| 10 | 8, 9 | jca 554 |
. . . . . 6
|
| 11 | mptssid.1 |
. . . . . . . . . . 11
| |
| 12 | 11 | ssrab2f 39300 |
. . . . . . . . . 10
|
| 13 | 7, 12 | eqsstri 3635 |
. . . . . . . . 9
|
| 14 | id 22 |
. . . . . . . . 9
| |
| 15 | 13, 14 | sseldi 3601 |
. . . . . . . 8
|
| 16 | 15 | adantr 481 |
. . . . . . 7
|
| 17 | simpr 477 |
. . . . . . 7
| |
| 18 | 16, 17 | jca 554 |
. . . . . 6
|
| 19 | 10, 18 | impbii 199 |
. . . . 5
|
| 20 | 19 | ax-gen 1722 |
. . . 4
|
| 21 | 20 | ax-gen 1722 |
. . 3
|
| 22 | eqopab2b 5005 |
. . 3
| |
| 23 | 21, 22 | mpbir 221 |
. 2
|
| 24 | df-mpt 4730 |
. 2
| |
| 25 | df-mpt 4730 |
. 2
| |
| 26 | 23, 24, 25 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-mpt 4730 |
| This theorem is referenced by: limsupequzmpt2 39950 liminfequzmpt2 40023 |
| Copyright terms: Public domain | W3C validator |