Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neifg Structured version   Visualization version   GIF version

Theorem neifg 32366
Description: The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 21646. (Contributed by Jeff Hankins, 3-Sep-2009.)
Hypothesis
Ref Expression
neifg.1 𝑋 = 𝐽
Assertion
Ref Expression
neifg ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem neifg
Dummy variables 𝑢 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neifg.1 . . . 4 𝑋 = 𝐽
21opnfbas 21646 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋))
3 fgval 21674 . . 3 ({𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
42, 3syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
5 pweq 4161 . . . . . . 7 (𝑡 = 𝑢 → 𝒫 𝑡 = 𝒫 𝑢)
65ineq2d 3814 . . . . . 6 (𝑡 = 𝑢 → ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) = ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
76neeq1d 2853 . . . . 5 (𝑡 = 𝑢 → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅ ↔ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
87elrab 3363 . . . 4 (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ (𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
9 selpw 4165 . . . . . . 7 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
109a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ 𝒫 𝑋𝑢𝑋))
11 n0 3931 . . . . . . . 8 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
12 elin 3796 . . . . . . . . . 10 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ (𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢))
13 sseq2 3627 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑆𝑥𝑆𝑧))
1413elrab 3363 . . . . . . . . . . 11 (𝑧 ∈ {𝑥𝐽𝑆𝑥} ↔ (𝑧𝐽𝑆𝑧))
15 selpw 4165 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 𝑢𝑧𝑢)
1614, 15anbi12i 733 . . . . . . . . . 10 ((𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1712, 16bitri 264 . . . . . . . . 9 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1817exbii 1774 . . . . . . . 8 (∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1911, 18bitri 264 . . . . . . 7 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
2019a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)))
2110, 20anbi12d 747 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ (𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))))
221isnei 20907 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
23223adant3 1081 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
24 anass 681 . . . . . . . . 9 (((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ (𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2524exbii 1774 . . . . . . . 8 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
26 df-rex 2918 . . . . . . . 8 (∃𝑧𝐽 (𝑆𝑧𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2725, 26bitr4i 267 . . . . . . 7 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))
2827anbi2i 730 . . . . . 6 ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢)))
2923, 28syl6rbbr 279 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3021, 29bitrd 268 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
318, 30syl5bb 272 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3231eqrdv 2620 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} = ((nei‘𝐽)‘𝑆))
334, 32eqtrd 2656 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  {crab 2916  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436  cfv 5888  (class class class)co 6650  fBascfbas 19734  filGencfg 19735  Topctop 20698  neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-top 20699  df-nei 20902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator