MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmf2 Structured version   Visualization version   GIF version

Theorem nmf2 22397
Description: The norm is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmf2.n 𝑁 = (norm‘𝑊)
nmf2.x 𝑋 = (Base‘𝑊)
nmf2.d 𝐷 = (dist‘𝑊)
nmf2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmf2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)

Proof of Theorem nmf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmf2.x . . . . . 6 𝑋 = (Base‘𝑊)
2 eqid 2622 . . . . . 6 (0g𝑊) = (0g𝑊)
31, 2grpidcl 17450 . . . . 5 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝑋)
4 metcl 22137 . . . . . 6 ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋 ∧ (0g𝑊) ∈ 𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
543comr 1273 . . . . 5 (((0g𝑊) ∈ 𝑋𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
63, 5syl3an1 1359 . . . 4 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
763expa 1265 . . 3 (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
8 eqid 2622 . . 3 (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))) = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊)))
97, 8fmptd 6385 . 2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))):𝑋⟶ℝ)
10 nmf2.n . . . . 5 𝑁 = (norm‘𝑊)
11 nmf2.d . . . . 5 𝐷 = (dist‘𝑊)
12 nmf2.e . . . . 5 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
1310, 1, 2, 11, 12nmfval2 22395 . . . 4 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))))
1413adantr 481 . . 3 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))))
1514feq1d 6030 . 2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → (𝑁:𝑋⟶ℝ ↔ (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))):𝑋⟶ℝ))
169, 15mpbird 247 1 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cmpt 4729   × cxp 5112  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  Basecbs 15857  distcds 15950  0gc0g 16100  Grpcgrp 17422  Metcme 19732  normcnm 22381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-met 19740  df-nm 22387
This theorem is referenced by:  isngp2  22401  isngp3  22402  nmf  22419
  Copyright terms: Public domain W3C validator