MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoofval Structured version   Visualization version   GIF version

Theorem nmoofval 27617
Description: The operator norm function. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1 𝑋 = (BaseSet‘𝑈)
nmoofval.2 𝑌 = (BaseSet‘𝑊)
nmoofval.3 𝐿 = (normCV𝑈)
nmoofval.4 𝑀 = (normCV𝑊)
nmoofval.6 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmoofval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
Distinct variable groups:   𝑥,𝑡,𝑧,𝑈   𝑡,𝑊,𝑥,𝑧   𝑡,𝑋,𝑧   𝑡,𝑌,𝑥   𝑡,𝐿   𝑡,𝑀
Allowed substitution hints:   𝐿(𝑥,𝑧)   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧,𝑡)   𝑋(𝑥)   𝑌(𝑧)

Proof of Theorem nmoofval
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoofval.6 . 2 𝑁 = (𝑈 normOpOLD 𝑊)
2 fveq2 6191 . . . . . 6 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 nmoofval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
42, 3syl6eqr 2674 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
54oveq2d 6666 . . . 4 (𝑢 = 𝑈 → ((BaseSet‘𝑤) ↑𝑚 (BaseSet‘𝑢)) = ((BaseSet‘𝑤) ↑𝑚 𝑋))
6 fveq2 6191 . . . . . . . . . . 11 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
7 nmoofval.3 . . . . . . . . . . 11 𝐿 = (normCV𝑈)
86, 7syl6eqr 2674 . . . . . . . . . 10 (𝑢 = 𝑈 → (normCV𝑢) = 𝐿)
98fveq1d 6193 . . . . . . . . 9 (𝑢 = 𝑈 → ((normCV𝑢)‘𝑧) = (𝐿𝑧))
109breq1d 4663 . . . . . . . 8 (𝑢 = 𝑈 → (((normCV𝑢)‘𝑧) ≤ 1 ↔ (𝐿𝑧) ≤ 1))
1110anbi1d 741 . . . . . . 7 (𝑢 = 𝑈 → ((((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))))
124, 11rexeqbidv 3153 . . . . . 6 (𝑢 = 𝑈 → (∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))))
1312abbidv 2741 . . . . 5 (𝑢 = 𝑈 → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))})
1413supeq1d 8352 . . . 4 (𝑢 = 𝑈 → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ))
155, 14mpteq12dv 4733 . . 3 (𝑢 = 𝑈 → (𝑡 ∈ ((BaseSet‘𝑤) ↑𝑚 (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ ((BaseSet‘𝑤) ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
16 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → (BaseSet‘𝑤) = (BaseSet‘𝑊))
17 nmoofval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
1816, 17syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → (BaseSet‘𝑤) = 𝑌)
1918oveq1d 6665 . . . 4 (𝑤 = 𝑊 → ((BaseSet‘𝑤) ↑𝑚 𝑋) = (𝑌𝑚 𝑋))
20 fveq2 6191 . . . . . . . . . . 11 (𝑤 = 𝑊 → (normCV𝑤) = (normCV𝑊))
21 nmoofval.4 . . . . . . . . . . 11 𝑀 = (normCV𝑊)
2220, 21syl6eqr 2674 . . . . . . . . . 10 (𝑤 = 𝑊 → (normCV𝑤) = 𝑀)
2322fveq1d 6193 . . . . . . . . 9 (𝑤 = 𝑊 → ((normCV𝑤)‘(𝑡𝑧)) = (𝑀‘(𝑡𝑧)))
2423eqeq2d 2632 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 = ((normCV𝑤)‘(𝑡𝑧)) ↔ 𝑥 = (𝑀‘(𝑡𝑧))))
2524anbi2d 740 . . . . . . 7 (𝑤 = 𝑊 → (((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))))
2625rexbidv 3052 . . . . . 6 (𝑤 = 𝑊 → (∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))))
2726abbidv 2741 . . . . 5 (𝑤 = 𝑊 → {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))})
2827supeq1d 8352 . . . 4 (𝑤 = 𝑊 → sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))
2919, 28mpteq12dv 4733 . . 3 (𝑤 = 𝑊 → (𝑡 ∈ ((BaseSet‘𝑤) ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
30 df-nmoo 27600 . . 3 normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑𝑚 (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
31 ovex 6678 . . . 4 (𝑌𝑚 𝑋) ∈ V
3231mptex 6486 . . 3 (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )) ∈ V
3315, 29, 30, 32ovmpt2 6796 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 normOpOLD 𝑊) = (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
341, 33syl5eq 2668 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  supcsup 8346  1c1 9937  *cxr 10073   < clt 10074  cle 10075  NrmCVeccnv 27439  BaseSetcba 27441  normCVcnmcv 27445   normOpOLD cnmoo 27596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sup 8348  df-nmoo 27600
This theorem is referenced by:  nmooval  27618  hhnmoi  28760
  Copyright terms: Public domain W3C validator