| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmoofval | Structured version Visualization version Unicode version | ||
| Description: The operator norm function. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoofval.1 |
|
| nmoofval.2 |
|
| nmoofval.3 |
|
| nmoofval.4 |
|
| nmoofval.6 |
|
| Ref | Expression |
|---|---|
| nmoofval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoofval.6 |
. 2
| |
| 2 | fveq2 6191 |
. . . . . 6
| |
| 3 | nmoofval.1 |
. . . . . 6
| |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . 5
|
| 5 | 4 | oveq2d 6666 |
. . . 4
|
| 6 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 7 | nmoofval.3 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 9 | 8 | fveq1d 6193 |
. . . . . . . . 9
|
| 10 | 9 | breq1d 4663 |
. . . . . . . 8
|
| 11 | 10 | anbi1d 741 |
. . . . . . 7
|
| 12 | 4, 11 | rexeqbidv 3153 |
. . . . . 6
|
| 13 | 12 | abbidv 2741 |
. . . . 5
|
| 14 | 13 | supeq1d 8352 |
. . . 4
|
| 15 | 5, 14 | mpteq12dv 4733 |
. . 3
|
| 16 | fveq2 6191 |
. . . . . 6
| |
| 17 | nmoofval.2 |
. . . . . 6
| |
| 18 | 16, 17 | syl6eqr 2674 |
. . . . 5
|
| 19 | 18 | oveq1d 6665 |
. . . 4
|
| 20 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 21 | nmoofval.4 |
. . . . . . . . . . 11
| |
| 22 | 20, 21 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 23 | 22 | fveq1d 6193 |
. . . . . . . . 9
|
| 24 | 23 | eqeq2d 2632 |
. . . . . . . 8
|
| 25 | 24 | anbi2d 740 |
. . . . . . 7
|
| 26 | 25 | rexbidv 3052 |
. . . . . 6
|
| 27 | 26 | abbidv 2741 |
. . . . 5
|
| 28 | 27 | supeq1d 8352 |
. . . 4
|
| 29 | 19, 28 | mpteq12dv 4733 |
. . 3
|
| 30 | df-nmoo 27600 |
. . 3
| |
| 31 | ovex 6678 |
. . . 4
| |
| 32 | 31 | mptex 6486 |
. . 3
|
| 33 | 15, 29, 30, 32 | ovmpt2 6796 |
. 2
|
| 34 | 1, 33 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-sup 8348 df-nmoo 27600 |
| This theorem is referenced by: nmooval 27618 hhnmoi 28760 |
| Copyright terms: Public domain | W3C validator |