MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoofval Structured version   Visualization version   Unicode version

Theorem nmoofval 27617
Description: The operator norm function. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1  |-  X  =  ( BaseSet `  U )
nmoofval.2  |-  Y  =  ( BaseSet `  W )
nmoofval.3  |-  L  =  ( normCV `  U )
nmoofval.4  |-  M  =  ( normCV `  W )
nmoofval.6  |-  N  =  ( U normOpOLD W
)
Assertion
Ref Expression
nmoofval  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  N  =  ( t  e.  ( Y  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
Distinct variable groups:    x, t,
z, U    t, W, x, z    t, X, z   
t, Y, x    t, L    t, M
Allowed substitution hints:    L( x, z)    M( x, z)    N( x, z, t)    X( x)    Y( z)

Proof of Theorem nmoofval
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoofval.6 . 2  |-  N  =  ( U normOpOLD W
)
2 fveq2 6191 . . . . . 6  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  ( BaseSet `  U )
)
3 nmoofval.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
42, 3syl6eqr 2674 . . . . 5  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  X )
54oveq2d 6666 . . . 4  |-  ( u  =  U  ->  (
( BaseSet `  w )  ^m  ( BaseSet `  u )
)  =  ( (
BaseSet `  w )  ^m  X ) )
6 fveq2 6191 . . . . . . . . . . 11  |-  ( u  =  U  ->  ( normCV `  u )  =  (
normCV
`  U ) )
7 nmoofval.3 . . . . . . . . . . 11  |-  L  =  ( normCV `  U )
86, 7syl6eqr 2674 . . . . . . . . . 10  |-  ( u  =  U  ->  ( normCV `  u )  =  L )
98fveq1d 6193 . . . . . . . . 9  |-  ( u  =  U  ->  (
( normCV `  u ) `  z )  =  ( L `  z ) )
109breq1d 4663 . . . . . . . 8  |-  ( u  =  U  ->  (
( ( normCV `  u
) `  z )  <_  1  <->  ( L `  z )  <_  1
) )
1110anbi1d 741 . . . . . . 7  |-  ( u  =  U  ->  (
( ( ( normCV `  u ) `  z
)  <_  1  /\  x  =  ( ( normCV `  w ) `  (
t `  z )
) )  <->  ( ( L `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) ) ) )
124, 11rexeqbidv 3153 . . . . . 6  |-  ( u  =  U  ->  ( E. z  e.  ( BaseSet
`  u ) ( ( ( normCV `  u
) `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) )  <->  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) ) )
1312abbidv 2741 . . . . 5  |-  ( u  =  U  ->  { x  |  E. z  e.  (
BaseSet `  u ) ( ( ( normCV `  u
) `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) ) }  =  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) } )
1413supeq1d 8352 . . . 4  |-  ( u  =  U  ->  sup ( { x  |  E. z  e.  ( BaseSet `  u ) ( ( ( normCV `  u ) `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) } ,  RR* ,  <  )
)
155, 14mpteq12dv 4733 . . 3  |-  ( u  =  U  ->  (
t  e.  ( (
BaseSet `  w )  ^m  ( BaseSet `  u )
)  |->  sup ( { x  |  E. z  e.  (
BaseSet `  u ) ( ( ( normCV `  u
) `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) ) } ,  RR* ,  <  ) )  =  ( t  e.  ( ( BaseSet `  w )  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) } ,  RR* ,  <  )
) )
16 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  ( BaseSet
`  w )  =  ( BaseSet `  W )
)
17 nmoofval.2 . . . . . 6  |-  Y  =  ( BaseSet `  W )
1816, 17syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  ( BaseSet
`  w )  =  Y )
1918oveq1d 6665 . . . 4  |-  ( w  =  W  ->  (
( BaseSet `  w )  ^m  X )  =  ( Y  ^m  X ) )
20 fveq2 6191 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( normCV `  w )  =  (
normCV
`  W ) )
21 nmoofval.4 . . . . . . . . . . 11  |-  M  =  ( normCV `  W )
2220, 21syl6eqr 2674 . . . . . . . . . 10  |-  ( w  =  W  ->  ( normCV `  w )  =  M )
2322fveq1d 6193 . . . . . . . . 9  |-  ( w  =  W  ->  (
( normCV `  w ) `  ( t `  z
) )  =  ( M `  ( t `
 z ) ) )
2423eqeq2d 2632 . . . . . . . 8  |-  ( w  =  W  ->  (
x  =  ( (
normCV
`  w ) `  ( t `  z
) )  <->  x  =  ( M `  ( t `
 z ) ) ) )
2524anbi2d 740 . . . . . . 7  |-  ( w  =  W  ->  (
( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) )  <->  ( ( L `  z )  <_  1  /\  x  =  ( M `  (
t `  z )
) ) ) )
2625rexbidv 3052 . . . . . 6  |-  ( w  =  W  ->  ( E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) )  <->  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  (
t `  z )
) ) ) )
2726abbidv 2741 . . . . 5  |-  ( w  =  W  ->  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) }  =  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } )
2827supeq1d 8352 . . . 4  |-  ( w  =  W  ->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( ( normCV `  w ) `  (
t `  z )
) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) )
2919, 28mpteq12dv 4733 . . 3  |-  ( w  =  W  ->  (
t  e.  ( (
BaseSet `  w )  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( ( normCV `  w ) `  (
t `  z )
) ) } ,  RR* ,  <  ) )  =  ( t  e.  ( Y  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
30 df-nmoo 27600 . . 3  |-  normOpOLD  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec  |->  ( t  e.  ( ( BaseSet `  w
)  ^m  ( BaseSet `  u ) )  |->  sup ( { x  |  E. z  e.  (
BaseSet `  u ) ( ( ( normCV `  u
) `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
31 ovex 6678 . . . 4  |-  ( Y  ^m  X )  e. 
_V
3231mptex 6486 . . 3  |-  ( t  e.  ( Y  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )
)  e.  _V
3315, 29, 30, 32ovmpt2 6796 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( U normOpOLD W )  =  ( t  e.  ( Y  ^m  X ) 
|->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
341, 33syl5eq 2668 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  N  =  ( t  e.  ( Y  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   supcsup 8346   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075   NrmCVeccnv 27439   BaseSetcba 27441   normCVcnmcv 27445   normOpOLDcnmoo 27596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sup 8348  df-nmoo 27600
This theorem is referenced by:  nmooval  27618  hhnmoi  28760
  Copyright terms: Public domain W3C validator