Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextendlt Structured version   Visualization version   GIF version

Theorem noextendlt 31822
Description: Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendlt (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩}) <s 𝐴)

Proof of Theorem noextendlt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 31802 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
2 funfn 5918 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
31, 2sylib 208 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
4 nodmon 31803 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
5 1on 7567 . . . . . . . . 9 1𝑜 ∈ On
6 fnsng 5938 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 1𝑜 ∈ On) → {⟨dom 𝐴, 1𝑜⟩} Fn {dom 𝐴})
74, 5, 6sylancl 694 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 1𝑜⟩} Fn {dom 𝐴})
8 nodmord 31806 . . . . . . . . . 10 (𝐴 No → Ord dom 𝐴)
9 ordirr 5741 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
108, 9syl 17 . . . . . . . . 9 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
11 disjsn 4246 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1210, 11sylibr 224 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
13 snidg 4206 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
144, 13syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
15 fvun2 6270 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 1𝑜⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1𝑜⟩}‘dom 𝐴))
163, 7, 12, 14, 15syl112anc 1330 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1𝑜⟩}‘dom 𝐴))
17 fvsng 6447 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 1𝑜 ∈ On) → ({⟨dom 𝐴, 1𝑜⟩}‘dom 𝐴) = 1𝑜)
184, 5, 17sylancl 694 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 1𝑜⟩}‘dom 𝐴) = 1𝑜)
1916, 18eqtrd 2656 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = 1𝑜)
20 ndmfv 6218 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
2110, 20syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
2219, 21jca 554 . . . . 5 (𝐴 No → (((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = 1𝑜 ∧ (𝐴‘dom 𝐴) = ∅))
23223mix1d 1236 . . . 4 (𝐴 No → ((((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = 1𝑜 ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = 1𝑜 ∧ (𝐴‘dom 𝐴) = 2𝑜) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2𝑜)))
24 fvex 6201 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) ∈ V
25 fvex 6201 . . . . 5 (𝐴‘dom 𝐴) ∈ V
2624, 25brtp 31639 . . . 4 (((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴‘dom 𝐴) ↔ ((((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = 1𝑜 ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = 1𝑜 ∧ (𝐴‘dom 𝐴) = 2𝑜) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2𝑜)))
2723, 26sylibr 224 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴‘dom 𝐴))
28 necom 2847 . . . . . . . 8 (((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥))
2928a1i 11 . . . . . . 7 (𝑥 ∈ On → (((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥)))
3029rabbiia 3185 . . . . . 6 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥)}
3130inteqi 4479 . . . . 5 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥)}
325elexi 3213 . . . . . . 7 1𝑜 ∈ V
3332prid1 4297 . . . . . 6 1𝑜 ∈ {1𝑜, 2𝑜}
3433noextenddif 31821 . . . . 5 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥)} = dom 𝐴)
3531, 34syl5eq 2668 . . . 4 (𝐴 No {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)} = dom 𝐴)
3635fveq2d 6195 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘dom 𝐴))
3735fveq2d 6195 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)}) = (𝐴‘dom 𝐴))
3827, 36, 373brtr4d 4685 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)}))
3933noextend 31819 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩}) ∈ No )
40 sltval2 31809 . . 3 (((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩}) ∈ No 𝐴 No ) → ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)})))
4139, 40mpancom 703 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩})‘𝑥) ≠ (𝐴𝑥)})))
4238, 41mpbird 247 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1𝑜⟩}) <s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036   = wceq 1483  wcel 1990  wne 2794  {crab 2916  cun 3572  cin 3573  c0 3915  {csn 4177  {ctp 4181  cop 4183   cint 4475   class class class wbr 4653  dom cdm 5114  Ord word 5722  Oncon0 5723  Fun wfun 5882   Fn wfn 5883  cfv 5888  1𝑜c1o 7553  2𝑜c2o 7554   No csur 31793   <s cslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator