Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noprefixmo Structured version   Visualization version   GIF version

Theorem noprefixmo 31848
Description: In any class of surreals, there is at most one value of the prefix property. (Contributed by Scott Fenton, 26-Nov-2021.)
Assertion
Ref Expression
noprefixmo (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑢,𝐺,𝑣,𝑥

Proof of Theorem noprefixmo
Dummy variables 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3107 . . . 4 (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) ↔ (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
2 simplrr 801 . . . . . . . . . 10 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑝𝐴)
3 simplrl 800 . . . . . . . . . 10 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑢𝐴)
42, 3ifcld 4131 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴)
5 iftrue 4092 . . . . . . . . . . . 12 (𝑢 <s 𝑝 → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑝)
65adantr 481 . . . . . . . . . . 11 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑝)
7 simpll 790 . . . . . . . . . . . . . 14 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝐴 No )
87, 3sseldd 3604 . . . . . . . . . . . . 13 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑢 No )
97, 2sseldd 3604 . . . . . . . . . . . . 13 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑝 No )
10 sltso 31827 . . . . . . . . . . . . . 14 <s Or No
11 soasym 31657 . . . . . . . . . . . . . 14 (( <s Or No ∧ (𝑢 No 𝑝 No )) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
1210, 11mpan 706 . . . . . . . . . . . . 13 ((𝑢 No 𝑝 No ) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
138, 9, 12syl2anc 693 . . . . . . . . . . . 12 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
1413impcom 446 . . . . . . . . . . 11 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ 𝑝 <s 𝑢)
156, 14eqnbrtrd 4671 . . . . . . . . . 10 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)
16 iffalse 4095 . . . . . . . . . . . 12 𝑢 <s 𝑝 → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑢)
1716adantr 481 . . . . . . . . . . 11 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑢)
18 sonr 5056 . . . . . . . . . . . . . 14 (( <s Or No 𝑢 No ) → ¬ 𝑢 <s 𝑢)
1910, 18mpan 706 . . . . . . . . . . . . 13 (𝑢 No → ¬ 𝑢 <s 𝑢)
208, 19syl 17 . . . . . . . . . . . 12 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ¬ 𝑢 <s 𝑢)
2120adantl 482 . . . . . . . . . . 11 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ 𝑢 <s 𝑢)
2217, 21eqnbrtrd 4671 . . . . . . . . . 10 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)
2315, 22pm2.61ian 831 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)
24 sonr 5056 . . . . . . . . . . . . . 14 (( <s Or No 𝑝 No ) → ¬ 𝑝 <s 𝑝)
2510, 24mpan 706 . . . . . . . . . . . . 13 (𝑝 No → ¬ 𝑝 <s 𝑝)
269, 25syl 17 . . . . . . . . . . . 12 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ¬ 𝑝 <s 𝑝)
2726adantl 482 . . . . . . . . . . 11 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ 𝑝 <s 𝑝)
286, 27eqnbrtrd 4671 . . . . . . . . . 10 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)
29 simpl 473 . . . . . . . . . . 11 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ 𝑢 <s 𝑝)
3017, 29eqnbrtrd 4671 . . . . . . . . . 10 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)
3128, 30pm2.61ian 831 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)
32 simpr1 1067 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴)
33 simprl2 1107 . . . . . . . . . . . . 13 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
3433adantr 481 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
35 simpr2 1068 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)
36 breq1 4656 . . . . . . . . . . . . . . 15 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (𝑣 <s 𝑢 ↔ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢))
3736notbid 308 . . . . . . . . . . . . . 14 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (¬ 𝑣 <s 𝑢 ↔ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢))
38 reseq1 5390 . . . . . . . . . . . . . . 15 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (𝑣 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))
3938eqeq2d 2632 . . . . . . . . . . . . . 14 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)))
4037, 39imbi12d 334 . . . . . . . . . . . . 13 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 → (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))))
4140rspcv 3305 . . . . . . . . . . . 12 (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 → (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))))
4232, 34, 35, 41syl3c 66 . . . . . . . . . . 11 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))
43 simprr2 1110 . . . . . . . . . . . . 13 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
4443adantr 481 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
45 simpr3 1069 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)
46 breq1 4656 . . . . . . . . . . . . . . 15 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (𝑣 <s 𝑝 ↔ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝))
4746notbid 308 . . . . . . . . . . . . . 14 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (¬ 𝑣 <s 𝑝 ↔ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝))
4838eqeq2d 2632 . . . . . . . . . . . . . 14 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)))
4947, 48imbi12d 334 . . . . . . . . . . . . 13 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝 → (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))))
5049rspcv 3305 . . . . . . . . . . . 12 (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 → (∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝 → (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))))
5132, 44, 45, 50syl3c 66 . . . . . . . . . . 11 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))
5242, 51eqtr4d 2659 . . . . . . . . . 10 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
5352ex 450 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
544, 23, 31, 53mp3and 1427 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
5554fveq1d 6193 . . . . . . 7 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = ((𝑝 ↾ suc 𝐺)‘𝐺))
56 simprl1 1106 . . . . . . . . . 10 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝐺 ∈ dom 𝑢)
57 sucidg 5803 . . . . . . . . . 10 (𝐺 ∈ dom 𝑢𝐺 ∈ suc 𝐺)
5856, 57syl 17 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝐺 ∈ suc 𝐺)
5958fvresd 6208 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = (𝑢𝐺))
60 simprl3 1108 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑢𝐺) = 𝑥)
6159, 60eqtrd 2656 . . . . . . 7 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = 𝑥)
6258fvresd 6208 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = (𝑝𝐺))
63 simprr3 1111 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑝𝐺) = 𝑦)
6462, 63eqtrd 2656 . . . . . . 7 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = 𝑦)
6555, 61, 643eqtr3d 2664 . . . . . 6 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑥 = 𝑦)
6665ex 450 . . . . 5 ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) → (((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
6766rexlimdvva 3038 . . . 4 (𝐴 No → (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
681, 67syl5bir 233 . . 3 (𝐴 No → ((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
6968alrimivv 1856 . 2 (𝐴 No → ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
70 eqeq2 2633 . . . . . 6 (𝑥 = 𝑦 → ((𝑢𝐺) = 𝑥 ↔ (𝑢𝐺) = 𝑦))
71703anbi3d 1405 . . . . 5 (𝑥 = 𝑦 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
7271rexbidv 3052 . . . 4 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
73 dmeq 5324 . . . . . . 7 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
7473eleq2d 2687 . . . . . 6 (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢𝐺 ∈ dom 𝑝))
75 breq2 4657 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑣 <s 𝑢𝑣 <s 𝑝))
7675notbid 308 . . . . . . . 8 (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝))
77 reseq1 5390 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
7877eqeq1d 2624 . . . . . . . 8 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
7976, 78imbi12d 334 . . . . . . 7 (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
8079ralbidv 2986 . . . . . 6 (𝑢 = 𝑝 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
81 fveq1 6190 . . . . . . 7 (𝑢 = 𝑝 → (𝑢𝐺) = (𝑝𝐺))
8281eqeq1d 2624 . . . . . 6 (𝑢 = 𝑝 → ((𝑢𝐺) = 𝑦 ↔ (𝑝𝐺) = 𝑦))
8374, 80, 823anbi123d 1399 . . . . 5 (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
8483cbvrexv 3172 . . . 4 (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))
8572, 84syl6bb 276 . . 3 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
8685mo4 2517 . 2 (∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
8769, 86sylibr 224 1 (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  ∃*wmo 2471  wral 2912  wrex 2913  wss 3574  ifcif 4086   class class class wbr 4653   Or wor 5034  dom cdm 5114  cres 5116  suc csuc 5725  cfv 5888   No csur 31793   <s cslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  nosupno  31849  nosupfv  31852
  Copyright terms: Public domain W3C validator