| Step | Hyp | Ref
| Expression |
| 1 | | nosupfv.1 |
. . . . 5
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2𝑜〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 2 | | iffalse 4095 |
. . . . 5
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2𝑜〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 3 | 1, 2 | syl5eq 2668 |
. . . 4
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 4 | 3 | fveq1d 6193 |
. . 3
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (𝑆‘𝐺) = ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺)) |
| 5 | 4 | 3ad2ant1 1082 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑆‘𝐺) = ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺)) |
| 6 | | dmeq 5324 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈) |
| 7 | 6 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → (𝐺 ∈ dom 𝑝 ↔ 𝐺 ∈ dom 𝑈)) |
| 8 | | breq2 4657 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑈 → (𝑣 <s 𝑝 ↔ 𝑣 <s 𝑈)) |
| 9 | 8 | notbid 308 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑈 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑣 <s 𝑈)) |
| 10 | | reseq1 5390 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑈 → (𝑝 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) |
| 11 | 10 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑈 → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 12 | 9, 11 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 13 | 12 | ralbidv 2986 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 14 | 7, 13 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → ((𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 15 | 14 | rspcev 3309 |
. . . . . . 7
⊢ ((𝑈 ∈ 𝐴 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 16 | 15 | 3impb 1260 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 17 | | dmeq 5324 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝) |
| 18 | 17 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑝)) |
| 19 | | breq2 4657 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑝 → (𝑣 <s 𝑢 ↔ 𝑣 <s 𝑝)) |
| 20 | 19 | notbid 308 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝)) |
| 21 | | reseq1 5390 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
| 22 | 21 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 23 | 20, 22 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 24 | 23 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 25 | 18, 24 | anbi12d 747 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 26 | 25 | cbvrexv 3172 |
. . . . . 6
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 27 | 16, 26 | sylibr 224 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 28 | 27 | 3ad2ant3 1084 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 29 | | simp32 1098 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈) |
| 30 | | eleq1 2689 |
. . . . . . . 8
⊢ (𝑦 = 𝐺 → (𝑦 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢)) |
| 31 | | suceq 5790 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐺 → suc 𝑦 = suc 𝐺) |
| 32 | 31 | reseq2d 5396 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐺 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝐺)) |
| 33 | 31 | reseq2d 5396 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐺 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝐺)) |
| 34 | 32, 33 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐺 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 35 | 34 | imbi2d 330 |
. . . . . . . . 9
⊢ (𝑦 = 𝐺 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 36 | 35 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑦 = 𝐺 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 37 | 30, 36 | anbi12d 747 |
. . . . . . 7
⊢ (𝑦 = 𝐺 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 38 | 37 | rexbidv 3052 |
. . . . . 6
⊢ (𝑦 = 𝐺 → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 39 | 38 | elabg 3351 |
. . . . 5
⊢ (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 40 | 29, 39 | syl 17 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 41 | 28, 40 | mpbird 247 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
| 42 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢)) |
| 43 | | suceq 5790 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → suc 𝑔 = suc 𝐺) |
| 44 | 43 | reseq2d 5396 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑢 ↾ suc 𝑔) = (𝑢 ↾ suc 𝐺)) |
| 45 | 43 | reseq2d 5396 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑣 ↾ suc 𝑔) = (𝑣 ↾ suc 𝐺)) |
| 46 | 44, 45 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 47 | 46 | imbi2d 330 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 48 | 47 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 49 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑢‘𝑔) = (𝑢‘𝐺)) |
| 50 | 49 | eqeq1d 2624 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝐺) = 𝑥)) |
| 51 | 42, 48, 50 | 3anbi123d 1399 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 52 | 51 | rexbidv 3052 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 53 | 52 | iotabidv 5872 |
. . . 4
⊢ (𝑔 = 𝐺 → (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 54 | | eqid 2622 |
. . . 4
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
| 55 | | iotaex 5868 |
. . . 4
⊢
(℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) ∈ V |
| 56 | 53, 54, 55 | fvmpt 6282 |
. . 3
⊢ (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} → ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺) = (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 57 | 41, 56 | syl 17 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺) = (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 58 | | simp1 1061 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝑈 ∈ 𝐴) |
| 59 | | simp2 1062 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝐺 ∈ dom 𝑈) |
| 60 | | simp3 1063 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 61 | | eqidd 2623 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → (𝑈‘𝐺) = (𝑈‘𝐺)) |
| 62 | | dmeq 5324 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → dom 𝑢 = dom 𝑈) |
| 63 | 62 | eleq2d 2687 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑈)) |
| 64 | | breq2 4657 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → (𝑣 <s 𝑢 ↔ 𝑣 <s 𝑈)) |
| 65 | 64 | notbid 308 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑈)) |
| 66 | | reseq1 5390 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → (𝑢 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) |
| 67 | 66 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 68 | 65, 67 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 69 | 68 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 70 | | fveq1 6190 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝑢‘𝐺) = (𝑈‘𝐺)) |
| 71 | 70 | eqeq1d 2624 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ((𝑢‘𝐺) = (𝑈‘𝐺) ↔ (𝑈‘𝐺) = (𝑈‘𝐺))) |
| 72 | 63, 69, 71 | 3anbi123d 1399 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑈‘𝐺) = (𝑈‘𝐺)))) |
| 73 | 72 | rspcev 3309 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑈‘𝐺) = (𝑈‘𝐺))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
| 74 | 58, 59, 60, 61, 73 | syl13anc 1328 |
. . . 4
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
| 75 | 74 | 3ad2ant3 1084 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
| 76 | | fvex 6201 |
. . . 4
⊢ (𝑈‘𝐺) ∈ V |
| 77 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑢‘𝐺) = (𝑢‘𝐺) |
| 78 | | fvex 6201 |
. . . . . . . . . . 11
⊢ (𝑢‘𝐺) ∈ V |
| 79 | | eqeq2 2633 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑢‘𝐺) → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = (𝑢‘𝐺))) |
| 80 | 79 | 3anbi3d 1405 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑢‘𝐺) → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑢‘𝐺)))) |
| 81 | 78, 80 | spcev 3300 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑢‘𝐺)) → ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 82 | 77, 81 | mp3an3 1413 |
. . . . . . . . 9
⊢ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 83 | 82 | reximi 3011 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐴 ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 84 | | rexcom4 3225 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐴 ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 85 | 83, 84 | sylib 208 |
. . . . . . 7
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 86 | 27, 85 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 87 | 86 | 3ad2ant3 1084 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 88 | | noprefixmo 31848 |
. . . . . . 7
⊢ (𝐴 ⊆
No → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 89 | 88 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 90 | 89 | 3ad2ant2 1083 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 91 | | eu5 2496 |
. . . . 5
⊢
(∃!𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 92 | 87, 90, 91 | sylanbrc 698 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃!𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 93 | | eqeq2 2633 |
. . . . . . 7
⊢ (𝑥 = (𝑈‘𝐺) → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = (𝑈‘𝐺))) |
| 94 | 93 | 3anbi3d 1405 |
. . . . . 6
⊢ (𝑥 = (𝑈‘𝐺) → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)))) |
| 95 | 94 | rexbidv 3052 |
. . . . 5
⊢ (𝑥 = (𝑈‘𝐺) → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)))) |
| 96 | 95 | iota2 5877 |
. . . 4
⊢ (((𝑈‘𝐺) ∈ V ∧ ∃!𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺))) |
| 97 | 76, 92, 96 | sylancr 695 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺))) |
| 98 | 75, 97 | mpbid 222 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺)) |
| 99 | 5, 57, 98 | 3eqtrd 2660 |
1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑆‘𝐺) = (𝑈‘𝐺)) |