Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosgnn0 Structured version   Visualization version   GIF version

Theorem nosgnn0 31811
Description: is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nosgnn0 ¬ ∅ ∈ {1𝑜, 2𝑜}

Proof of Theorem nosgnn0
StepHypRef Expression
1 1n0 7575 . . . 4 1𝑜 ≠ ∅
21nesymi 2851 . . 3 ¬ ∅ = 1𝑜
3 nsuceq0 5805 . . . . 5 suc 1𝑜 ≠ ∅
4 necom 2847 . . . . . 6 (suc 1𝑜 ≠ ∅ ↔ ∅ ≠ suc 1𝑜)
5 df-2o 7561 . . . . . . 7 2𝑜 = suc 1𝑜
65neeq2i 2859 . . . . . 6 (∅ ≠ 2𝑜 ↔ ∅ ≠ suc 1𝑜)
74, 6bitr4i 267 . . . . 5 (suc 1𝑜 ≠ ∅ ↔ ∅ ≠ 2𝑜)
83, 7mpbi 220 . . . 4 ∅ ≠ 2𝑜
98neii 2796 . . 3 ¬ ∅ = 2𝑜
102, 9pm3.2ni 899 . 2 ¬ (∅ = 1𝑜 ∨ ∅ = 2𝑜)
11 0ex 4790 . . 3 ∅ ∈ V
1211elpr 4198 . 2 (∅ ∈ {1𝑜, 2𝑜} ↔ (∅ = 1𝑜 ∨ ∅ = 2𝑜))
1310, 12mtbir 313 1 ¬ ∅ ∈ {1𝑜, 2𝑜}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383   = wceq 1483  wcel 1990  wne 2794  c0 3915  {cpr 4179  suc csuc 5725  1𝑜c1o 7553  2𝑜c2o 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180  df-suc 5729  df-1o 7560  df-2o 7561
This theorem is referenced by:  nosgnn0i  31812  sltres  31815  noseponlem  31817  sltso  31827  nosepssdm  31836  nodenselem8  31841  nolt02olem  31844
  Copyright terms: Public domain W3C validator