| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.2ni | Structured version Visualization version GIF version | ||
| Description: Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| pm3.2ni.1 | ⊢ ¬ 𝜑 |
| pm3.2ni.2 | ⊢ ¬ 𝜓 |
| Ref | Expression |
|---|---|
| pm3.2ni | ⊢ ¬ (𝜑 ∨ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2ni.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | id 22 | . . 3 ⊢ (𝜑 → 𝜑) | |
| 3 | pm3.2ni.2 | . . . 4 ⊢ ¬ 𝜓 | |
| 4 | 3 | pm2.21i 116 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | jaoi 394 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜑) |
| 6 | 1, 5 | mto 188 | 1 ⊢ ¬ (𝜑 ∨ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 |
| This theorem is referenced by: snsn0non 5846 canthp1lem2 9475 recgt0ii 10929 xrltnr 11953 pnfnlt 11962 nltmnf 11963 lhop 23779 2lgslem4 25131 axlowdimlem13 25834 3pm3.2ni 31594 nosgnn0 31811 clsk1indlem4 38342 clsk1indlem1 38343 dandysum2p2e4 41165 |
| Copyright terms: Public domain | W3C validator |