Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noseponlem Structured version   Visualization version   GIF version

Theorem noseponlem 31817
Description: Lemma for nosepon 31818. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.)
Assertion
Ref Expression
noseponlem ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem noseponlem
StepHypRef Expression
1 nodmon 31803 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
213ad2ant1 1082 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ On)
3 nodmord 31806 . . . . . . 7 (𝐴 No → Ord dom 𝐴)
4 ordirr 5741 . . . . . . 7 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
53, 4syl 17 . . . . . 6 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
653ad2ant1 1082 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ dom 𝐴 ∈ dom 𝐴)
7 ndmfv 6218 . . . . 5 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
86, 7syl 17 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) = ∅)
9 nosgnn0 31811 . . . . . . 7 ¬ ∅ ∈ {1𝑜, 2𝑜}
10 elno3 31808 . . . . . . . . . . 11 (𝐵 No ↔ (𝐵:dom 𝐵⟶{1𝑜, 2𝑜} ∧ dom 𝐵 ∈ On))
1110simplbi 476 . . . . . . . . . 10 (𝐵 No 𝐵:dom 𝐵⟶{1𝑜, 2𝑜})
12113ad2ant2 1083 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → 𝐵:dom 𝐵⟶{1𝑜, 2𝑜})
13 simp3 1063 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵)
1412, 13ffvelrnd 6360 . . . . . . . 8 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ∈ {1𝑜, 2𝑜})
15 eleq1 2689 . . . . . . . 8 ((𝐵‘dom 𝐴) = ∅ → ((𝐵‘dom 𝐴) ∈ {1𝑜, 2𝑜} ↔ ∅ ∈ {1𝑜, 2𝑜}))
1614, 15syl5ibcom 235 . . . . . . 7 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ((𝐵‘dom 𝐴) = ∅ → ∅ ∈ {1𝑜, 2𝑜}))
179, 16mtoi 190 . . . . . 6 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ (𝐵‘dom 𝐴) = ∅)
1817neqned 2801 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ≠ ∅)
1918necomd 2849 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∅ ≠ (𝐵‘dom 𝐴))
208, 19eqnetrd 2861 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴))
21 fveq2 6191 . . . . 5 (𝑥 = dom 𝐴 → (𝐴𝑥) = (𝐴‘dom 𝐴))
22 fveq2 6191 . . . . 5 (𝑥 = dom 𝐴 → (𝐵𝑥) = (𝐵‘dom 𝐴))
2321, 22neeq12d 2855 . . . 4 (𝑥 = dom 𝐴 → ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)))
2423rspcev 3309 . . 3 ((dom 𝐴 ∈ On ∧ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
252, 20, 24syl2anc 693 . 2 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
26 df-ne 2795 . . . 4 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ (𝐴𝑥) = (𝐵𝑥))
2726rexbii 3041 . . 3 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
28 rexnal 2995 . . 3 (∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
2927, 28bitri 264 . 2 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
3025, 29sylib 208 1 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  c0 3915  {cpr 4179  dom cdm 5114  Ord word 5722  Oncon0 5723  wf 5884  cfv 5888  1𝑜c1o 7553  2𝑜c2o 7554   No csur 31793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796
This theorem is referenced by:  nosepon  31818
  Copyright terms: Public domain W3C validator