Proof of Theorem nosepssdm
| Step | Hyp | Ref
| Expression |
| 1 | | nosepne 31831 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 2 | 1 | neneqd 2799 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ¬ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 3 | | nodmord 31806 |
. . . . . . . . 9
⊢ (𝐴 ∈
No → Ord dom 𝐴) |
| 4 | 3 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → Ord dom 𝐴) |
| 5 | | ordn2lp 5743 |
. . . . . . . 8
⊢ (Ord dom
𝐴 → ¬ (dom 𝐴 ∈ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴)) |
| 6 | 4, 5 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ¬ (dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴)) |
| 7 | | imnan 438 |
. . . . . . 7
⊢ ((dom
𝐴 ∈ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴) ↔ ¬ (dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴)) |
| 8 | 6, 7 | sylibr 224 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → (dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴)) |
| 9 | 8 | imp 445 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴) |
| 10 | | ndmfv 6218 |
. . . . 5
⊢ (¬
∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
| 11 | 9, 10 | syl 17 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
| 12 | | nosepeq 31835 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘dom 𝐴) = (𝐵‘dom 𝐴)) |
| 13 | | simpl1 1064 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝐴 ∈ No
) |
| 14 | 13, 3 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → Ord dom 𝐴) |
| 15 | | ordirr 5741 |
. . . . . . . . . 10
⊢ (Ord dom
𝐴 → ¬ dom 𝐴 ∈ dom 𝐴) |
| 16 | | ndmfv 6218 |
. . . . . . . . . 10
⊢ (¬
dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅) |
| 17 | 14, 15, 16 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘dom 𝐴) = ∅) |
| 18 | 17 | eqeq1d 2624 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ ∅ = (𝐵‘dom 𝐴))) |
| 19 | | eqcom 2629 |
. . . . . . . 8
⊢ (∅
= (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅) |
| 20 | 18, 19 | syl6bb 276 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅)) |
| 21 | | simpl2 1065 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝐵 ∈ No
) |
| 22 | | nofun 31802 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → Fun 𝐵) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → Fun 𝐵) |
| 24 | | nosgnn0 31811 |
. . . . . . . . . . 11
⊢ ¬
∅ ∈ {1𝑜, 2𝑜} |
| 25 | | norn 31804 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈
No → ran 𝐵
⊆ {1𝑜, 2𝑜}) |
| 26 | 21, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ran 𝐵 ⊆ {1𝑜,
2𝑜}) |
| 27 | 26 | sseld 3602 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (∅ ∈ ran 𝐵 → ∅ ∈
{1𝑜, 2𝑜})) |
| 28 | 24, 27 | mtoi 190 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ ∅ ∈ ran 𝐵) |
| 29 | | funeldmb 31661 |
. . . . . . . . . 10
⊢ ((Fun
𝐵 ∧ ¬ ∅
∈ ran 𝐵) → (dom
𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅)) |
| 30 | 23, 28, 29 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅)) |
| 31 | 30 | necon2bbid 2837 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐵‘dom 𝐴) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐵)) |
| 32 | | nodmord 31806 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈
No → Ord dom 𝐵) |
| 33 | 32 | 3ad2ant2 1083 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → Ord dom 𝐵) |
| 34 | | ordtr1 5767 |
. . . . . . . . . . 11
⊢ (Ord dom
𝐵 → ((dom 𝐴 ∈ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵)) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ((dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵)) |
| 36 | 35 | expdimp 453 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵 → dom 𝐴 ∈ dom 𝐵)) |
| 37 | 36 | con3d 148 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (¬ dom 𝐴 ∈ dom 𝐵 → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
| 38 | 31, 37 | sylbid 230 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐵‘dom 𝐴) = ∅ → ¬ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
| 39 | 20, 38 | sylbid 230 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
| 40 | 12, 39 | mpd 15 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵) |
| 41 | | ndmfv 6218 |
. . . . 5
⊢ (¬
∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵 → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
| 42 | 40, 41 | syl 17 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
| 43 | 11, 42 | eqtr4d 2659 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 44 | 2, 43 | mtand 691 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ¬ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) |
| 45 | | nosepon 31818 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) |
| 46 | | nodmon 31803 |
. . . 4
⊢ (𝐴 ∈
No → dom 𝐴
∈ On) |
| 47 | 46 | 3ad2ant1 1082 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → dom 𝐴 ∈ On) |
| 48 | | ontri1 5757 |
. . 3
⊢ ((∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On ∧ dom 𝐴 ∈ On) → (∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 49 | 45, 47, 48 | syl2anc 693 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → (∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 50 | 44, 49 | mpbird 247 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ⊆ dom 𝐴) |